IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v48y2014i4p2225-2240.html
   My bibliography  Save this article

A fuzzy set theory based computational model to represent the quality of inter-rater agreement

Author

Listed:
  • Enrico Ciavolino
  • Sergio Salvatore
  • Antonio Calcagnì

Abstract

In this paper we present a method to evaluate the quality of a rater’s judgement, which can integrate and enrich the use of inter-rater agreement as a reliability measure. Our proposal is an integrative one and evaluates the quality of a rater’s performance through an analysis of the profile of that individual rater’s performance. We discuss its rationale on the basis of the interpretation of inter-rater agreement, highlighting some critical issues. For this purpose, we adopt a computational model based on fuzzy set theory, demonstrating its main characteristics with an exemplary case study. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Enrico Ciavolino & Sergio Salvatore & Antonio Calcagnì, 2014. "A fuzzy set theory based computational model to represent the quality of inter-rater agreement," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2225-2240, July.
  • Handle: RePEc:spr:qualqt:v:48:y:2014:i:4:p:2225-2240
    DOI: 10.1007/s11135-013-9888-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-013-9888-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-013-9888-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Ciavolino & Antonio Calcagnì, 2014. "A generalized maximum entropy (GME) approach for crisp-input/fuzzy-output regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3401-3414, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    2. Fernando Reche & María Morales & Antonio Salmerón, 2020. "Statistical Parameters Based on Fuzzy Measures," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    3. Enrico Ciavolino & Antonio Calcagnì, 2014. "A generalized maximum entropy (GME) approach for crisp-input/fuzzy-output regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3401-3414, November.
    4. Colubi, Ana & Gonzalez-Rodriguez, Gil, 2007. "Triangular fuzzification of random variables and power of distribution tests: Empirical discussion," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4742-4750, May.
    5. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    6. A. Blanco-Fernández & A. Ramos-Guajardo & A. Colubi, 2013. "Fuzzy representations of real-valued random variables: applications to exploratory and inferential studies," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 245-259, November.
    7. Ramos-Guajardo, Ana Belén & Lubiano, María Asunción, 2012. "K-sample tests for equality of variances of random fuzzy sets," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 956-966.
    8. Tianyu Tan & Hye Suk & Heungsun Hwang & Jooseop Lim, 2013. "Functional fuzzy clusterwise regression analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 57-82, March.
    9. Ana Colubi & Renato Coppi & Pierpaolo D’urso & Maria angeles Gil, 2007. "Statistics with fuzzy random variables," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 277-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:48:y:2014:i:4:p:2225-2240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.