IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v48y2014i1p75-89.html
   My bibliography  Save this article

Investigating parental intention of using internet filter software

Author

Listed:
  • Tsung-Hsien Tsai
  • Chien-Hung Wei
  • Chung-Yu Tsai

Abstract

The objective of this study is to survey the usage of internet filter software for blocking inappropriate web contents in Taiwan, and also to investigate the precedent factors for adopting such a prevention tool. We surveyed 417 households with children/adolescents (aged below 16) and home internet access. Participants answered questions which were designed based on the framework of the decomposed theory of planned behavior. The structural equation model was implemented to find out the relationships among constructs. Results show that only one in seven families currently uses internet filter software for blocking inappropriate web contents in Taiwan. Furthermore, this study also shows that attitude, subjective norms, and perceived behavior control are all key factors to affect parental intention of adopting internet filter software. More specifically, compatibility, peer’s influence, self-efficacy, and facilitating conditions are four major precedent variables to influence parental intention via attitude, subjective norms, and perceived behavior control. Results obtained in this study suggest the urgency of prompting the use of filter software especially when no similar alternatives are available in the market. In addition, focusing on the promotion of product’s compatible features, the use of teachers’ opinions, and the establishment of supporting resources will highly increase parental intention of using internet filter software. Copyright Springer Science+Business Media B.V. 2014

Suggested Citation

  • Tsung-Hsien Tsai & Chien-Hung Wei & Chung-Yu Tsai, 2014. "Investigating parental intention of using internet filter software," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(1), pages 75-89, January.
  • Handle: RePEc:spr:qualqt:v:48:y:2014:i:1:p:75-89
    DOI: 10.1007/s11135-012-9750-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-012-9750-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-012-9750-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    2. Te-Hsin Liang & Jia-ling Peng & Ching-Yun Yu, 2012. "A simpler quality of e-life indicator: does the Internet have a positive impact on the quality of life in Taiwan," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(4), pages 1025-1045, June.
    3. Shirley Taylor & Peter A. Todd, 1995. "Understanding Information Technology Usage: A Test of Competing Models," Information Systems Research, INFORMS, vol. 6(2), pages 144-176, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jing Yu & Liu, Dahai, 2022. "Mask-wearing intentions on airplanes during COVID-19 – Application of theory of planned behavior model," Transport Policy, Elsevier, vol. 119(C), pages 32-44.
    2. Hasan, Rajibul & Lowe, Ben & Petrovici, Dan, 2020. "Consumer adoption of pro-poor service innovations in subsistence marketplaces," Journal of Business Research, Elsevier, vol. 121(C), pages 461-475.
    3. Paul Juinn Bing Tan, 2013. "Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan," SAGE Open, , vol. 3(4), pages 21582440135, October.
    4. Chen, Shih-Chih & Hung, Chung-Wen, 2016. "Elucidating the factors influencing the acceptance of green products: An extension of theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 155-163.
    5. Venkatesh, Viswanath & Maruping, Likoebe M. & Brown, Susan A., 2006. "Role of time in self-prediction of behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 100(2), pages 160-176, July.
    6. Garima Malik & A. Sajeevan Rao, 2019. "Extended expectation-confirmation model to predict continued usage of ODR/ride hailing apps: role of perceived value and self-efficacy," Information Technology & Tourism, Springer, vol. 21(4), pages 461-482, December.
    7. Borhan, Muhamad Nazri & Ibrahim, Ahmad Nazrul Hakimi & Miskeen, Manssour A. Abdulasalm, 2019. "Extending the theory of planned behaviour to predict the intention to take the new high-speed rail for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external inf," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 373-384.
    8. Fernanda Leão Ramos & Jorge Brantes Ferreira & Angilberto Sabino de Freitas & Juliana Werneck Rodrigues, 2018. "The Effect of Trust in the Intention to Use m-banking," Brazilian Business Review, Fucape Business School, vol. 15(2), pages 175-191, March.
    9. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    11. Chia-Chien Hsu & Brian Sandford & Chia-Ju Ling & Ching-Torng Lin, 2021. "Can the Unified Theory of Acceptance and Use of Technology (UTAUT) Help Explain Subjective Well-Being in Senior Citizens due to Gateball Participation?," IJERPH, MDPI, vol. 18(17), pages 1-15, August.
    12. Meng, Bo & Choi, Kyuhwan, 2016. "The role of authenticity in forming slow tourists' intentions: Developing an extended model of goal-directed behavior," Tourism Management, Elsevier, vol. 57(C), pages 397-410.
    13. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    14. Junmin Lee & Keungoui Kim & Hyunha Shin & Junseok Hwang, 2018. "Acceptance Factors of Appropriate Technology: Case of Water Purification Systems in Binh Dinh, Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    15. Jeeyeon Jeong & Yaeri Kim & Taewoo Roh, 2021. "Do Consumers Care About Aesthetics and Compatibility? The Intention to Use Wearable Devices in Health Care," SAGE Open, , vol. 11(3), pages 21582440211, August.
    16. Mei-Fang Chen & Ching-Ti Pan & Ming-Chuan Pan, 2009. "The Joint Moderating Impact of Moral Intensity and Moral Judgment on Consumer’s Use Intention of Pirated Software," Journal of Business Ethics, Springer, vol. 90(3), pages 361-373, December.
    17. Sanjeev Verma, 2015. "Harnessing the Benefit of Social Networking Sites for Intentional Social Action: Determinants and Challenges," Vision, , vol. 19(2), pages 104-111, June.
    18. Muhammad Ali & Syed Ali Raza & Chin-Hong Puah & Mohd Zaini Abd Karim, 2017. "Islamic home financing in Pakistan: a SEM-based approach using modified TPB model," Housing Studies, Taylor & Francis Journals, vol. 32(8), pages 1156-1177, November.
    19. Peng Shi & Frank Vanclay & Jin Yu, 2022. "Post-Resettlement Support Policies, Psychological Factors, and Farmers’ Homestead Exit Intention and Behavior," Land, MDPI, vol. 11(2), pages 1-22, February.
    20. Yiming Shao & Zhugen Wang & Zhiwei Zhou & Haojing Chen & Yuanlong Cui & Zhenghuan Zhou, 2022. "Determinants Affecting Public Intention to Use Micro-Vertical Farming: A Survey Investigation," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:48:y:2014:i:1:p:75-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.