IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v11y2019i3d10.1007_s12469-018-0182-6.html
   My bibliography  Save this article

A two-stage optimization approach for subscription bus services network design: the China case

Author

Listed:
  • Wencheng Huang

    (Southwest Jiaotong University
    Southwest Jiaotong University
    Southwest Jiaotong University)

  • Bin Shuai

    (Southwest Jiaotong University
    Southwest Jiaotong University)

  • Eric Antwi

    (Southwest Jiaotong University)

Abstract

Subscription bus services (SBS) is a convenient and low-carbon rapid transport mode for passengers’ daily commute. The network design becomes a vital problem because it closely relates to both operators’ profit and passengers’ daily convenient traveling. In this paper, a two-stage model is formulated to optimize the subscription bus services network design (SBSND). During the first stage we minimize the total service distance and the number of vehicles as a single target objective function; vehicle capacity utilization rate, service time, ratio of service distance and linear distance between origin and destination are limited by means of constraints. During the second stage we share the same objective function and similar constraints used during the first stage, but the parameter settings of the constraints are different. Correspondingly, a two-stage algorithm is also designed to solve the SBSND problem. Firstly, we obtain the possible service lines, match the passengers and bus capacity. Next, we use Dijkstra to obtain the shortest SBS operation lines. Finally, we form the SBS network. The three phases are the main processes about the algorithm during both stages. The comparison between existing SBS in Chengdu city and the optimized SBS shows the high efficiency of the optimization model and algorithm formulated in this paper: the operation line length increases from 250.6 to 300.9 km; only 40 passengers have no SBS after optimization; the average operation time is reduced from 56.8 to 50.2 min.

Suggested Citation

  • Wencheng Huang & Bin Shuai & Eric Antwi, 2019. "A two-stage optimization approach for subscription bus services network design: the China case," Public Transport, Springer, vol. 11(3), pages 589-616, October.
  • Handle: RePEc:spr:pubtra:v:11:y:2019:i:3:d:10.1007_s12469-018-0182-6
    DOI: 10.1007/s12469-018-0182-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-018-0182-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-018-0182-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Yingling & Guthrie, Andrew & Levinson, David, 2016. "Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 251-264.
    2. Wei Fan & Randy B. Machemehl, 2008. "A Tabu Search Based Heuristic Method for the Transit Route Network Design Problem," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 387-408, Springer.
    3. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    4. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    5. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    6. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
    7. Enrique Fernández L., J. & de Cea Ch., Joaquin & Malbran, R. Henry, 2008. "Demand responsive urban public transport system design: Methodology and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 951-972, August.
    8. Jang, Kitae & Chung, Koohong & Yeo, Hwasoo, 2014. "A dynamic pricing strategy for high occupancy toll lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 69-80.
    9. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    10. J. S. C. Chew & L. S. Lee & H. V. Seow, 2013. "Genetic Algorithm for Biobjective Urban Transit Routing Problem," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-15, December.
    11. Marković, Nikola & Kim, Myungseob (Edward) & Schonfeld, Paul, 2016. "Statistical and machine learning approach for planning dial-a-ride systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 41-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenbao Wang & Sicheng Wang & Haitao Lian, 2021. "A route-planning method for long-distance commuter express bus service based on OD estimation from mobile phone location data: the case of the Changping Corridor in Beijing," Public Transport, Springer, vol. 13(1), pages 101-125, March.
    2. Igor Varyash & Alexey Mikhaylov & Nikita Moiseev & Kirill Aleshin, 2020. "Triple bottom line and corporate social responsibility performance indicators for Russian companies," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(1), pages 313-329, September.
    3. Nikita Moiseev & Alexey Mikhaylov & Igor Varyash & Abdul Saqib, 2020. "Investigating the relation of GDP per capita and corruption index," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(1), pages 780-794, September.
    4. Bing Zhang & Zhishan Zhong & Xun Zhou & Yongqiang Qu & Fangwei Li, 2023. "Optimization Model and Solution Algorithm for Rural Customized Bus Route Operation under Multiple Constraints," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    5. Altaf Hussain PADDER, 2023. "An economic analysis of trade war and deglobalization in current international relations within the paradigm of globalization," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(634), S), pages 215-226, Spring.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    2. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    3. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    4. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    5. Yuan Liu & Heshan Zhang & Tao Xu & Yaping Chen, 2022. "A Heuristic Algorithm Based on Travel Demand for Transit Network Design," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    6. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    7. Pierre-Léo Bourbonnais & Catherine Morency & Martin Trépanier & Éric Martel-Poliquin, 2021. "Transit network design using a genetic algorithm with integrated road network and disaggregated O–D demand data," Transportation, Springer, vol. 48(1), pages 95-130, February.
    8. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    9. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    10. Ahmed, Leena & Mumford, Christine & Kheiri, Ahmed, 2019. "Solving urban transit route design problem using selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 274(2), pages 545-559.
    11. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    12. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    13. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    14. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    15. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    16. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    17. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.
    18. Ming Wei & Congxin Yang & Tao Liu, 2022. "An Integrated Multi-Objective Optimization for Dynamic Airport Shuttle Bus Location, Route Design and Departure Frequency Setting Problem," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
    19. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    20. Chu, James C., 2018. "Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 188-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:11:y:2019:i:3:d:10.1007_s12469-018-0182-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.