IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i1d10.1007_s11336-022-09891-5.html
   My bibliography  Save this article

A Note on the Connection Between Trek Rules and Separable Nonlinear Least Squares in Linear Structural Equation Models

Author

Listed:
  • Maximilian S. Ernst

    (Max Planck Institute for Human Development
    Humboldt-Universität Zu Berlin)

  • Aaron Peikert

    (Max Planck Institute for Human Development
    Humboldt-Universität Zu Berlin
    Max Planck UCL Centre for Computational Psychiatry and Ageing Research)

  • Andreas M. Brandmaier

    (Max Planck Institute for Human Development
    Max Planck UCL Centre for Computational Psychiatry and Ageing Research
    MSB Medical School Berlin)

  • Yves Rosseel

    (Ghent University)

Abstract

We show that separable nonlinear least squares (SNLLS) estimation is applicable to all linear structural equation models (SEMs) that can be specified in RAM notation. SNLLS is an estimation technique that has successfully been applied to a wide range of models, for example neural networks and dynamic systems, often leading to improvements in convergence and computation time. It is applicable to models of a special form, where a subset of parameters enters the objective linearly. Recently, Kreiberg et al. (Struct Equ Model Multidiscip J 28(5):725–739, 2021. https://doi.org/10.1080/10705511.2020.1835484 ) have shown that this is also the case for factor analysis models. We generalize this result to all linear SEMs. To that end, we show that undirected effects (variances and covariances) and mean parameters enter the objective linearly, and therefore, in the least squares estimation of structural equation models, only the directed effects have to be obtained iteratively. For model classes without unknown directed effects, SNLLS can be used to analytically compute least squares estimates. To provide deeper insight into the nature of this result, we employ trek rules that link graphical representations of structural equation models to their covariance parametrization. We further give an efficient expression for the gradient, which is crucial to make a fast implementation possible. Results from our simulation indicate that SNLLS leads to improved convergence rates and a reduced number of iterations.

Suggested Citation

  • Maximilian S. Ernst & Aaron Peikert & Andreas M. Brandmaier & Yves Rosseel, 2023. "A Note on the Connection Between Trek Rules and Separable Nonlinear Least Squares in Linear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 98-116, March.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09891-5
    DOI: 10.1007/s11336-022-09891-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09891-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09891-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dianne O’Leary & Bert Rust, 2013. "Variable projection for nonlinear least squares problems," Computational Optimization and Applications, Springer, vol. 54(3), pages 579-593, April.
    2. S. Lee & R. Jennrich, 1979. "A study of algorithms for covariance structure analysis with specific comparisons using factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 44(1), pages 99-113, March.
    3. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Maydeu-Olivares, 2017. "Assessing the Size of Model Misfit in Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 533-558, September.
    2. Md. Mominur Rahman & Bilkis Akhter, 2021. "The impact of investment in human capital on bank performance: evidence from Bangladesh," Future Business Journal, Springer, vol. 7(1), pages 1-13, December.
    3. César Merino-Soto & Gina Chávez-Ventura & Verónica López-Fernández & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    4. Nathaniel Oliver Iotti & Damiano Menin & Tomas Jungert, 2022. "Early Adolescents’ Motivations to Defend Victims of Cyberbullying," IJERPH, MDPI, vol. 19(14), pages 1-9, July.
    5. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    6. Andreea-Ionela Puiu & Anca Monica Ardeleanu & Camelia Cojocaru & Anca Bratu, 2021. "Exploring the Effect of Status Quo, Innovativeness, and Involvement Tendencies on Luxury Fashion Innovations: The Mediation Role of Status Consumption," Mathematics, MDPI, vol. 9(9), pages 1-18, May.
    7. Slupphaug, KJell & Mehmetoglu, Mehmet & Mittner, Matthias, 2024. "modsem: An R package for estimating latent interactions and quadratic effects," OSF Preprints h3rpw, Center for Open Science.
    8. Allen, Jaime & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2019. "On evasion behaviour in public transport: Dissatisfaction or contagion?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 626-651.
    9. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    10. Sai-fu Fung & Esther Oi-wah Chow & Chau-kiu Cheung, 2020. "Development and Evaluation of the Psychometric Properties of a Brief Wisdom Development Scale," IJERPH, MDPI, vol. 17(8), pages 1-14, April.
    11. Goran Calic & Moren Lévesque & Anton Shevchenko, 2024. "On why women-owned businesses take more time to secure microloans," Small Business Economics, Springer, vol. 63(3), pages 917-938, October.
    12. Dang Vu, Hoai Nam & Nielsen, Martin Reinhardt, 2022. "Understanding determinants of the intention to buy rhino horn in Vietnam through the Theory of Planned Behaviour and the Theory of Interpersonal Behaviour," Ecological Economics, Elsevier, vol. 195(C).
    13. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    14. Zaitun Mohd Saman & Ab Hamid Siti-Azrin & Azizah Othman & Yee Cheng Kueh, 2021. "The Validity and Reliability of the Malay Version of the Cyberbullying Scale among Secondary School Adolescents in Malaysia," IJERPH, MDPI, vol. 18(21), pages 1-12, November.
    15. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    16. Castaldo, Sandro & Ciacci, Andrea & Penco, Lara, 2023. "Perceived corporate social responsibility and job satisfaction in grocery retail: A comparison between low- and high-productivity stores," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    17. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    18. Daniel Hoppe, 2021. "Argument-Based Versus Emotion-Based Videos During the Early Stages of Recruitment: Effects on Perceived Employer Brand Image, Application Intentions, and Positive Word-of-Mouth," Corporate Reputation Review, Palgrave Macmillan, vol. 24(1), pages 31-47, February.
    19. Chen, Junhong & Nian, Yefan & Gao, Zhifeng, 2022. "Value, Attitude/Belief, and Sustainable Food Consumption," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322485, Agricultural and Applied Economics Association.
    20. Pezzuti, Lina & Tommasi, Marco & Saggino, Aristide & Dawe, James & Lauriola, Marco, 2020. "Gender differences and measurement bias in the assessment of adult intelligence: Evidence from the Italian WAIS-IV and WAIS-R standardizations," Intelligence, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09891-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.