IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v79y2014i1p154-174.html
   My bibliography  Save this article

Does Standard Deviation Matter? Using “Standard Deviation” to Quantify Security of Multistage Testing

Author

Listed:
  • Chun Wang
  • Yi Zheng
  • Hua-Hua Chang

Abstract

With the advent of web-based technology, online testing is becoming a mainstream mode in large-scale educational assessments. Most online tests are administered continuously in a testing window, which may post test security problems because examinees who take the test earlier may share information with those who take the test later. Researchers have proposed various statistical indices to assess the test security, and one most often used index is the average test-overlap rate, which was further generalized to the item pooling index (Chang & Zhang, 2002 , 2003 ). These indices, however, are all defined as the means (that is, the expected proportion of common items among examinees) and they were originally proposed for computerized adaptive testing (CAT). Recently, multistage testing (MST) has become a popular alternative to CAT. The unique features of MST make it important to report not only the mean, but also the standard deviation (SD) of test overlap rate, as we advocate in this paper. The standard deviation of test overlap rate adds important information to the test security profile, because for the same mean, a large SD reflects that certain groups of examinees share more common items than other groups. In this study, we analytically derived the lower bounds of the SD under MST, with the results under CAT as a benchmark. It is shown that when the mean overlap rate is the same between MST and CAT, the SD of test overlap tends to be larger in MST. A simulation study was conducted to provide empirical evidence. We also compared the security of MST under the single-pool versus the multiple-pool designs; both analytical and simulation studies show that the non-overlapping multiple-pool design will slightly increase the security risk. Copyright The Psychometric Society 2014

Suggested Citation

  • Chun Wang & Yi Zheng & Hua-Hua Chang, 2014. "Does Standard Deviation Matter? Using “Standard Deviation” to Quantify Security of Multistage Testing," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 154-174, January.
  • Handle: RePEc:spr:psycho:v:79:y:2014:i:1:p:154-174
    DOI: 10.1007/s11336-013-9356-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9356-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9356-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua-Hua Chang & Jinming Zhang, 2002. "Hypergeometric family and item overlap rates in computerized adaptive testing," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 387-398, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Wang & Gongjun Xu & Zhuoran Shang & Nathan Kuncel, 2018. "Detecting Aberrant Behavior and Item Preknowledge: A Comparison of Mixture Modeling Method and Residual Method," Journal of Educational and Behavioral Statistics, , vol. 43(4), pages 469-501, August.
    2. Onur Demirkaya & Ummugul Bezirhan & Jinming Zhang, 2023. "Detecting Item Preknowledge Using Revisits With Speed and Accuracy," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 521-542, August.
    3. Edison M. Choe & Justin L. Kern & Hua-Hua Chang, 2018. "Optimizing the Use of Response Times for Item Selection in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 135-158, April.
    4. Edison M. Choe & Hua-Hua Chang, 2019. "The Asymptotic Distribution of Average Test Overlap Rate in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1129-1151, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Cheng, 2009. "When Cognitive Diagnosis Meets Computerized Adaptive Testing: CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 619-632, December.
    2. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    3. Onur Demirkaya & Ummugul Bezirhan & Jinming Zhang, 2023. "Detecting Item Preknowledge Using Revisits With Speed and Accuracy," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 521-542, August.
    4. Edison M. Choe & Hua-Hua Chang, 2019. "The Asymptotic Distribution of Average Test Overlap Rate in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1129-1151, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:79:y:2014:i:1:p:154-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.