IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v76y2011i3p461-470.html
   My bibliography  Save this article

Factor Analysis via Components Analysis

Author

Listed:
  • Peter Bentler
  • Jan Leeuw

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Bentler & Jan Leeuw, 2011. "Factor Analysis via Components Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 461-470, July.
  • Handle: RePEc:spr:psycho:v:76:y:2011:i:3:p:461-470
    DOI: 10.1007/s11336-011-9217-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-011-9217-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-011-9217-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    2. Peter Schönemann, 1966. "A generalized solution of the orthogonal procrustes problem," Psychometrika, Springer;The Psychometric Society, vol. 31(1), pages 1-10, March.
    3. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    4. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    5. Robert Jennrich, 2002. "A simple general method for oblique rotation," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 7-19, March.
    6. Louis Guttman, 1956. "“Best possible” systematic estimates of communalities," Psychometrika, Springer;The Psychometric Society, vol. 21(3), pages 273-285, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linze Chen & Junhan Liu & Yang Zhao, 2023. "Innovation and Development: An Analysis of Landscape Construction Factors in Quanzhou Maritime Silkroad Art Park," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    2. Chenqi Han & Yimin Song & Yang Zhao, 2024. "An Evaluation Study on Tourists’ Environmental Satisfaction after Re-Use of Industrial Heritage Buildings," Sustainability, MDPI, vol. 16(7), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    2. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    3. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    5. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    6. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    7. Qi, Xin & Luo, Ruiyan & Zhao, Hongyu, 2013. "Sparse principal component analysis by choice of norm," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 127-160.
    8. Xin Qi & Ruiyan Luo, 2015. "Sparse Principal Component Analysis in Hilbert Space," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 270-289, March.
    9. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Working Papers halshs-02235543, HAL.
    10. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    11. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    12. Ningning Xia & Zhidong Bai, 2019. "Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices," Statistical Papers, Springer, vol. 60(3), pages 983-1015, June.
    13. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    14. Fang, Kuangnan & Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge, 2018. "Integrative sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 1-16.
    15. Puyi Fang & Zhaoxing Gao & Ruey S. Tsay, 2023. "Determination of the effective cointegration rank in high-dimensional time-series predictive regressions," Papers 2304.12134, arXiv.org, revised Apr 2023.
    16. Philip Nadler & Alessio Sancetta, 2023. "Empirical Asset Pricing with Functional Factors," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1258-1281.
    17. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    18. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    19. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    20. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:76:y:2011:i:3:p:461-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.