IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v63y1998i1p47-63.html
   My bibliography  Save this article

An item response model with internal restrictions on item difficulty

Author

Listed:
  • René Butter
  • Paul Boeck
  • Norman Verhelst

Abstract

No abstract is available for this item.

Suggested Citation

  • René Butter & Paul Boeck & Norman Verhelst, 1998. "An item response model with internal restrictions on item difficulty," Psychometrika, Springer;The Psychometric Society, vol. 63(1), pages 47-63, March.
  • Handle: RePEc:spr:psycho:v:63:y:1998:i:1:p:47-63
    DOI: 10.1007/BF02295436
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02295436
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02295436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Embretson (Whitely), 1984. "A general latent trait model for response processes," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 175-186, June.
    2. Gerhard Fischer, 1983. "Logistic latent trait models with linear constraints," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 3-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Bechger & Norman Verhelst & Huub Verstralen, 2001. "Identifiability of nonlinear logistic test models," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 357-371, September.
    2. Gerhard Fischer, 2004. "Remarks on “equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002)," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 305-315, June.
    3. Timo Bechger & Huub Verstralen & Norman Verhelst & Gunter Maris, 2004. "Equivalent LLTMS: A rejoinder," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 317-318, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    2. Tsonaka, R. & Moustaki, I., 2007. "Parameter constraints in generalized linear latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4164-4177, May.
    3. Sora Lee & Daniel M. Bolt, 2018. "Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 453-475, June.
    4. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    5. Elizabeth Ayers & Sophia Rabe-Hesketh & Rebecca Nugent, 2013. "Incorporating Student Covariates in Cognitive Diagnosis Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 195-224, July.
    6. Cheng-Hsuan Li & Yi-Jin Ju & Pei-Jyun Hsieh, 2022. "A Nonparametric Weighted Cognitive Diagnosis Model and Its Application on Remedial Instruction in a Small-Class Situation," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    7. Hendrikus Kelderman, 1984. "Loglinear Rasch model tests," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 223-245, June.
    8. Anton Formann & Ivo Ponocny, 2002. "Latent change classes in dichotomous data," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 437-457, September.
    9. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    10. Jochen Ranger & Christoph König & Benjamin W. Domingue & Jörg-Tobias Kuhn & Andreas Frey, 2024. "A Multidimensional Partially Compensatory Response Time Model on Basis of the Log-Normal Distribution," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 431-464, June.
    11. Ping Chen & Tao Xin & Chun Wang & Hua-Hua Chang, 2012. "Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 201-222, April.
    12. Jianan Sun & Yunxiao Chen & Jingchen Liu & Zhiliang Ying & Tao Xin, 2016. "Latent Variable Selection for Multidimensional Item Response Theory Models via $$L_{1}$$ L 1 Regularization," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 921-939, December.
    13. Hiroshi Tamano & Daichi Mochihashi, 2023. "Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 487-526, June.
    14. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    15. Denis Federiakin, 2020. "Investigating The Cross-National Comparability Of Testing Using Response Times," HSE Working papers WP BRP 57/EDU/2020, National Research University Higher School of Economics.
    16. Annalina Sarra & Adelia Evangelista & Barbara Iannone & Tonio Battista, 2023. "Looking for patterns of change amid pandemic period in students’ evaluation of academic teaching," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4759-4777, October.
    17. Susan Embretson & Xiangdong Yang, 2013. "A Multicomponent Latent Trait Model for Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 14-36, January.
    18. Nikolaus Bezruczko & Serah S. Fatani & Noriko Magari, 2016. "Three Tales of Change," SAGE Open, , vol. 6(3), pages 21582440166, July.
    19. José H. Lozano & Javier Revuelta, 2021. "A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 994-1015, December.
    20. Anton Formann, 1986. "A note on the computation of the second-order derivatives of the elementary symmetric functions in the rasch model," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 335-339, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:63:y:1998:i:1:p:47-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.