IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v36y1971i2p175-193.html
   My bibliography  Save this article

A comparative evaluation of several prominent methods of oblique factor transformation

Author

Listed:
  • A. Ralph Hakstian

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Ralph Hakstian, 1971. "A comparative evaluation of several prominent methods of oblique factor transformation," Psychometrika, Springer;The Psychometric Society, vol. 36(2), pages 175-193, June.
  • Handle: RePEc:spr:psycho:v:36:y:1971:i:2:p:175-193
    DOI: 10.1007/BF02291397
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02291397
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02291397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shigeo Kashiwagi, 1965. "Geometric vector orthogonal rotation method in multiple-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(4), pages 515-530, December.
    2. H. Rimoldi, 1948. "Study of some factors related to intelligence," Psychometrika, Springer;The Psychometric Society, vol. 13(1), pages 27-46, March.
    3. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    4. Melany Baehr, 1963. "A comparison of graphic and analytic solutions for both oblique and orthogonal simple structures for factors of employee morale," Psychometrika, Springer;The Psychometric Society, vol. 28(2), pages 199-209, June.
    5. Peter Schönemann, 1966. "Varisim: A new machine method for orthogonal rotation," Psychometrika, Springer;The Psychometric Society, vol. 31(2), pages 235-248, June.
    6. John Carroll, 1953. "An analytical solution for approximating simple structure in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 23-38, March.
    7. Chester Harris & Henry Kaiser, 1964. "Oblique factor analytic solutions by orthogonal transformations," Psychometrika, Springer;The Psychometric Society, vol. 29(4), pages 347-362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klapper, Daniel & Cooper, Lee G. & Hildebrandt, Lutz, 1999. "The congruence of theoretical and empirical patterns of inter-store price competition," SFB 373 Discussion Papers 1999,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Henk Kiers & Jos Berge, 1994. "The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 81-90, March.
    3. Jeffrey Katz & F. Rohlf, 1974. "Functionplane—A new approach to simple structure rotation," Psychometrika, Springer;The Psychometric Society, vol. 39(1), pages 37-51, March.
    4. Hildebrandt, Lutz & Klapper, Daniel, 1997. "Möglichkeiten und Ansätze der Analyse dreimodaler Daten für die Marktforschung," SFB 373 Discussion Papers 1997,90, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jos Berge, 1995. "Suppressing permutations or rigid planar rotations: A remedy against nonoptimal varimax rotations," Psychometrika, Springer;The Psychometric Society, vol. 60(3), pages 437-446, September.
    2. Giovanni Franco, 2014. "Toward a simple structure: a comparison of different rotation techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(3), pages 1785-1797, May.
    3. Olgierd Porebski, 1968. "A semi-orthogonal dependent factor solution," Psychometrika, Springer;The Psychometric Society, vol. 33(4), pages 451-468, December.
    4. Henk Kiers, 1997. "Three-mode orthomax rotation," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 579-598, December.
    5. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    6. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    7. Peter Filzmoser, 2000. "Orthogonal principal planes," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 363-376, September.
    8. Urbano Lorenzo-Seva, 2000. "The weighted oblimin rotation," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 301-318, September.
    9. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    10. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    11. Robert Jennrich, 2001. "A simple general procedure for orthogonal rotation," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 289-306, June.
    12. Chester Harris, 1967. "On factors and factor scores," Psychometrika, Springer;The Psychometric Society, vol. 32(4), pages 363-379, December.
    13. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    14. Edward Cureton & Stanley Mulaik, 1975. "The weighted varimax rotation and the promax rotation," Psychometrika, Springer;The Psychometric Society, vol. 40(2), pages 183-195, June.
    15. Urbano Lorenzo-Seva, 2003. "A factor simplicity index," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 49-60, March.
    16. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    17. Henk Kiers & Jos Berge, 1994. "The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 81-90, March.
    18. David Saunders, 1960. "A computer program to find the best-fitting orthogonal factors for a given hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 25(2), pages 199-205, June.
    19. T. F. Cox & D. S. Arnold, 2018. "Simple components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 83-99, January.
    20. Douglas Clarkson & Robert Jennrich, 1988. "Quartic rotation criteria and algorithms," Psychometrika, Springer;The Psychometric Society, vol. 53(2), pages 251-259, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:36:y:1971:i:2:p:175-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.