IDEAS home Printed from https://ideas.repec.org/a/spr/pharmo/v6y2022i1d10.1007_s41669-021-00287-2.html
   My bibliography  Save this article

Cost-Effectiveness of Inotuzumab Ozogamicin Compared to Standard of Care Chemotherapy for Treating Relapsed or Refractory Acute Lymphoblastic Leukaemia Patients in Norway and Sweden

Author

Listed:
  • I. Oostrum

    (Ingress-Health)

  • T. A. Russell-Smith

    (Pfizer Inc)

  • M. Jakobsson

    (Pfizer Innovations AB)

  • J. Torup Østby

    (Pfizer Inc)

  • B. Heeg

    (Ingress-Health)

Abstract

Objective The aim was to estimate the cost-effectiveness of inotuzumab ozogamicin (InO) versus standard of care chemotherapy (SoC) for adults with relapsed or refractory B cell acute lymphoblastic leukaemia (R/R ALL) in Sweden and Norway, and compare this to evaluations made by the health technology assessment (HTA) authorities Tandvårds- och läkemedelsförmånsverket (TLV) and the Norwegian Medicines Agency (NoMA). Materials and methods A partitioned survival model was developed to determine incremental cost-effectiveness ratios (ICERs) for InO versus SoC. Parametric survival models were fit to overall survival and progression-free survival Kaplan-Meier data from the INO-VATE ALL phase III trial. Two base cases were run using (1) Swedish and (2) Norwegian inputs (costs and discount rates). Core clinical inputs and utilities did not differ between countries. Analyses were then conducted to reflect the preferred assumptions of TLV and NoMA. Univariate and multivariate sensitivity analyses were performed. Results The base case deterministic ICERs for InO versus SoC were €16,219/quality-adjusted life years (QALY) in Sweden (probabilistic €19,415) and €44,405/QALY in Norway (probabilistic €47,305). The ICERs using our model but applying the preferred assumptions of TLV or NoMA were €74,061/QALY (probabilistic €77,484) and €59,391/QALY (probabilistic €63,632), respectively. Differences between our base cases and the ICERs with TLV and NoMA settings were mainly explained by the exclusion of productivity costs and use of pooled post-haematopoietic stem-cell transplant (post-HSCT) survival in Sweden and use of higher HSCT costs in Norway. All ICERs remained below the approximated willingness-to-pay thresholds. The probability of InO being cost-effective ranged from 77 to 99% versus SoC. Conclusions InO can likely be considered cost-effective versus SoC under our and the HTA-preferred settings.

Suggested Citation

  • I. Oostrum & T. A. Russell-Smith & M. Jakobsson & J. Torup Østby & B. Heeg, 2022. "Cost-Effectiveness of Inotuzumab Ozogamicin Compared to Standard of Care Chemotherapy for Treating Relapsed or Refractory Acute Lymphoblastic Leukaemia Patients in Norway and Sweden," PharmacoEconomics - Open, Springer, vol. 6(1), pages 47-62, January.
  • Handle: RePEc:spr:pharmo:v:6:y:2022:i:1:d:10.1007_s41669-021-00287-2
    DOI: 10.1007/s41669-021-00287-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41669-021-00287-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41669-021-00287-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth G Bond & Lusine Abrahamyan & Mohammad K A Khan & Andrea Gershon & Murray Krahn & Ping Li & Rajibul Mian & Nicholas Mitsakakis & Mohsen Sadatsafavi & Teresa To & Petros Pechlivanoglou & for t, 2020. "Understanding resource utilization and mortality in COPD to support policy making: A microsimulation study," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    2. Sharples, Linda D., 2018. "The role of statistics in the era of big data: Electronic health records for healthcare research," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 105-110.
    3. Suvra Pal & Hongbo Yu & Zachary D. Loucks & Ian M. Harris, 2020. "Illustration of the Flexibility of Generalized Gamma Distribution in Modeling Right Censored Survival Data: Analysis of Two Cancer Datasets," Annals of Data Science, Springer, vol. 7(1), pages 77-90, March.
    4. Burger, Rulof & Ito, Seiro, 2016. "Labour market turnovers among South African youths," IDE Discussion Papers 603, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    5. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment Using Model Averaging: A Simulation Study," Medical Decision Making, , vol. 41(4), pages 476-484, May.
    6. Michael Crowther & Paul Lambert, 2016. "Multistate survival analysis in Stata," United Kingdom Stata Users' Group Meetings 2016 02, Stata Users Group.
    7. Fuino, Michel & Wagner, Joël, 2020. "Duration of long-term care: Socio-economic factors, type of care interactions and evolution," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 151-168.
    8. Lauren Scott & Chris Rogers, 2016. "Creating summary tables using the sumtable command," United Kingdom Stata Users' Group Meetings 2016 05, Stata Users Group.
    9. Machado, Robson J.M. & van den Hout, Ardo & Marra, Giampiero, 2021. "Penalised maximum likelihood estimation in multi-state models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    10. Francesco Grossetti & Francesca Ieva & Anna Maria Paganoni, 2018. "A multi-state approach to patients affected by chronic heart failure," Health Care Management Science, Springer, vol. 21(2), pages 281-291, June.
    11. Michał Narajewski & Florian Ziel, 2019. "Estimation and Simulation of the Transaction Arrival Process in Intraday Electricity Markets," Energies, MDPI, vol. 12(23), pages 1-16, November.
    12. Caitlin Eichten & Qiufei Ma & Thomas E. Delea & May Hagiwara & Roberto Ramos & Şerban R. Iorga & Jie Zhang & Richard T. Maziarz, 2021. "Lifetime Costs for Treated Follicular Lymphoma Patients in the US," PharmacoEconomics, Springer, vol. 39(10), pages 1163-1183, October.
    13. Gabrielle Jongeneel & Marjolein J. E. Greuter & Felice N. Erning & Miriam Koopman & Jan P. Medema & Raju Kandimalla & Ajay Goel & Luis Bujanda & Gerrit A. Meijer & Remond J. A. Fijneman & Martijn G. H, 2020. "Modeling Personalized Adjuvant TreaTment in EaRly stage coloN cancer (PATTERN)," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(7), pages 1059-1073, September.
    14. Linh Hoang Khanh Dang & Carlo Giovanni Camarda & France Meslé & Nadine Ouellette & Jean-Marie Robine & Jacques Vallin, 2023. "The question of the human mortality plateau: Contrasting insights by longevity pioneers," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 48(11), pages 321-338.
    15. Kangho Suh & Brian J. Cole & Andreas Gomoll & Seung-Mi Lee & Hangseok Choi & Chul-Won Ha & Hong Chul Lim & Myung Ku Kim & Gwi-Yeom Ha & Dong-Churl Suh, 2023. "Cost Effectiveness of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Patients with Knee Osteoarthritis," Applied Health Economics and Health Policy, Springer, vol. 21(1), pages 141-152, January.
    16. María del Mar Rueda & Sergio Martínez-Puertas & Luis Castro-Martín, 2022. "Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.
    17. Camarda, Carlo Giovanni, 2022. "The curse of the plateau. Measuring confidence in human mortality estimates at extreme ages," Theoretical Population Biology, Elsevier, vol. 144(C), pages 24-36.
    18. Szilárd Nemes & Erik Bülow & Andreas Gustavsson, 2020. "A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances," Stats, MDPI, vol. 3(2), pages 1-13, May.
    19. Jodi Gray & Thomas Sullivan & Nicholas R. Latimer & Amy Salter & Michael J. Sorich & Robyn L. Ward & Jonathan Karnon, 2021. "Extrapolation of Survival Curves Using Standard Parametric Models and Flexible Parametric Spline Models: Comparisons in Large Registry Cohorts with Advanced Cancer," Medical Decision Making, , vol. 41(2), pages 179-193, February.
    20. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment: A Simulation Study," Medical Decision Making, , vol. 41(1), pages 37-50, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharmo:v:6:y:2022:i:1:d:10.1007_s41669-021-00287-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.