IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301481.html
   My bibliography  Save this article

Penalised maximum likelihood estimation in multi-state models for interval-censored data

Author

Listed:
  • Machado, Robson J.M.
  • van den Hout, Ardo
  • Marra, Giampiero

Abstract

Continuous-time multi-state Markov models can be used to describe transitions over time across health states. Given longitudinal interval-censored data on transitions between states, statistical inference on changing health is possible by specifying models for transition hazards. Parametric time-dependent hazards can be restrictive, and nonparametric hazard specifications using splines are presented as an alternative. The smoothing of the splines is controlled by using penalised maximum likelihood estimation. With multiple time-dependent hazards in a multi-state model, there are multiple penalty parameters and selecting the optimal amount of smoothing is a challenge. A grid search to estimate the penalty parameters is computational intensive especially when combined with methods to deal with interval-censored transition times. A new and efficient method is proposed to estimate multi-state models with splines where the estimation of the penalty parameters is automatic. A simulation study is undertaken to validate the method and to illustrate the effect of interval censoring. The feasibility of the method is illustrated with two applications.

Suggested Citation

  • Machado, Robson J.M. & van den Hout, Ardo & Marra, Giampiero, 2021. "Penalised maximum likelihood estimation in multi-state models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301481
    DOI: 10.1016/j.csda.2020.107057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301481
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    2. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    3. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    4. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    5. Wojtyś, Magorzata & Marra, Giampiero & Radice, Rosalba, 2016. "Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i06).
    6. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    7. Andrew C. Titman, 2011. "Flexible Nonhomogeneous Markov Models for Panel Observed Data," Biometrics, The International Biometric Society, vol. 67(3), pages 780-787, September.
    8. Pierre Joly & Daniel Commenges, 1999. "A Penalized Likelihood Approach for a Progressive Three-State Model with Censored and Truncated Data: Application to AIDS," Biometrics, The International Biometric Society, vol. 55(3), pages 887-890, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Michael Crowther & Paul Lambert, 2016. "Multistate survival analysis in Stata," United Kingdom Stata Users' Group Meetings 2016 02, Stata Users Group.
    3. Lauren Scott & Chris Rogers, 2016. "Creating summary tables using the sumtable command," United Kingdom Stata Users' Group Meetings 2016 05, Stata Users Group.
    4. Sharples, Linda D., 2018. "The role of statistics in the era of big data: Electronic health records for healthcare research," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 105-110.
    5. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).
    6. Geminiani, Elena & Marra, Giampiero & Moustaki, Irini, 2021. "Single and multiple-group penalized factor analysis: a trust-region algorithm approach with integrated automatic multiple tuning parameter selection," LSE Research Online Documents on Economics 108873, London School of Economics and Political Science, LSE Library.
    7. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    8. Elena Geminiani & Giampiero Marra & Irini Moustaki, 2021. "Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 65-95, March.
    9. Karol Wyszynski & Giampiero Marra, 2018. "Sample selection models for count data in R," Computational Statistics, Springer, vol. 33(3), pages 1385-1412, September.
    10. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    11. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    12. Maike Hohberg & Francesco Donat & Giampiero Marra & Thomas Kneib, 2021. "Beyond unidimensional poverty analysis using distributional copula models for mixed ordered‐continuous outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1365-1390, November.
    13. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    14. Francesco Grossetti & Francesca Ieva & Anna Maria Paganoni, 2018. "A multi-state approach to patients affected by chronic heart failure," Health Care Management Science, Springer, vol. 21(2), pages 281-291, June.
    15. Mussida Chiara & Zanin Luca, 2019. "Voluntary Mobility of Employees for Better Job Opportunities Given a Temporary Contract: Insights Regarding an Age-Varying Association Between the Two Events," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 19(2), pages 1-27, April.
    16. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    17. Giampiero Marra & Rosalba Radice & David M. Zimmer, 2020. "Estimating the binary endogenous effect of insurance on doctor visits by copula‐based regression additive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 953-971, August.
    18. Qiu, Qinjing & Kawai, Reiichiro, 2022. "A decoupling principle for Markov-modulated chains," Statistics & Probability Letters, Elsevier, vol. 182(C).
    19. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    20. Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.