IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v30y2012i2p119-126.html
   My bibliography  Save this article

Incorporating Calibrated Model Parameters into Sensitivity Analyses

Author

Listed:
  • Douglas Taylor
  • Vivek Pawar
  • Denise Kruzikas
  • Kristen Gilmore
  • Myrlene Sanon
  • Milton Weinstein

Abstract

Objective: The aim of this study was to examine how calibration uncertainty affects the overall uncertainty of a mathematical model and to evaluate potential drivers of calibration uncertainty. Methods: A lifetime Markov model of the natural history of human papillomavirus (HPV) infection and cervical disease was developed to assess the cost effectiveness of a hypothetical HPV vaccine. Published data on cervical cancer incidence and mortality and prevalence of pre-cursor lesions were used as endpoints to calibrate the age- and HPV-type-specific transition probabilities between health states using the Nelder-Mead simplex method of calibration. A conventional probabilistic sensitivity analysis (PSA) was performed to assess uncertainty in vaccine efficacy, cost and utility estimates. To quantify the uncertainty around calibrated transition probabilities, a second PSA (calibration PSA) was performed using 25 distinct combinations of objective functions and starting simplexes. Results: The initial calibration produced an incremental cost-effectiveness ratio (ICER) of $US4300 per QALY for vaccination compared with no vaccination, and the conventional PSA gave a 95% credible interval of dominant to $US9800 around this estimate (2005 values). The 95% credible interval for the ICERs in the calibration PSA ranged from $US1000 to $US37 700. Conclusions: Compared with a conventional PSA, the calibration PSA results reveal a greater level of uncertainty in cost-effectiveness results. Sensitivity analyses around model calibration should be performed to account for uncertainty arising from the calibration process. Copyright Springer International Publishing AG 2012

Suggested Citation

  • Douglas Taylor & Vivek Pawar & Denise Kruzikas & Kristen Gilmore & Myrlene Sanon & Milton Weinstein, 2012. "Incorporating Calibrated Model Parameters into Sensitivity Analyses," PharmacoEconomics, Springer, vol. 30(2), pages 119-126, February.
  • Handle: RePEc:spr:pharme:v:30:y:2012:i:2:p:119-126
    DOI: 10.2165/11593360-000000000-00000
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2165/11593360-000000000-00000
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2165/11593360-000000000-00000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Karnon & Carolyn Czoski-Murray & Kevin J. Smith & Christopher Brand, 2009. "A Hybrid Cohort Individual Sampling Natural History Model of Age-Related Macular Degeneration: Assessing the Cost-Effectiveness of Screening Using Probabilistic Calibration," Medical Decision Making, , vol. 29(3), pages 304-316, May.
    2. Natasha Stout & Amy Knudsen & Chung Kong & Pamela McMahon & G. Gazelle, 2009. "Calibration Methods Used in Cancer Simulation Models and Suggested Reporting Guidelines," PharmacoEconomics, Springer, vol. 27(7), pages 533-545, July.
    3. Tazio Vanni & Jonathan Karnon & Jason Madan & Richard White & W. Edmunds & Anna Foss & Rosa Legood, 2011. "Calibrating Models in Economic Evaluation," PharmacoEconomics, Springer, vol. 29(1), pages 35-49, January.
    4. Rutter, Carolyn M. & Miglioretti, Diana L. & Savarino, James E., 2009. "Bayesian Calibration of Microsimulation Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1338-1350.
    5. Douglas Taylor & Vivek Pawar & Denise Kruzikas & Kristen Gilmore & Ankur Pandya & Rowan Iskandar & Milton Weinstein, 2010. "Methods of Model Calibration," PharmacoEconomics, Springer, vol. 28(11), pages 995-1000, November.
    6. Jonathan Karnon & Tazio Vanni, 2011. "Calibrating Models in Economic Evaluation," PharmacoEconomics, Springer, vol. 29(1), pages 51-62, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    2. C Marijn Hazelbag & Jonathan Dushoff & Emanuel M Dominic & Zinhle E Mthombothi & Wim Delva, 2020. "Calibration of individual-based models to epidemiological data: A systematic review," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-17, May.
    3. Xiuxian Wang & Na Geng & Jianxin Qiu & Zhibin Jiang & Liping Zhou, 2020. "Markov model and meta-heuristics combined method for cost-effectiveness analysis," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 213-235, March.
    4. Penny R. Breeze & Hazel Squires & Kate Ennis & Petra Meier & Kate Hayes & Nik Lomax & Alan Shiell & Frank Kee & Frank de Vocht & Martin O’Flaherty & Nigel Gilbert & Robin Purshouse & Stewart Robinson , 2023. "Guidance on the use of complex systems models for economic evaluations of public health interventions," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1603-1625, July.
    5. Meimei Wang & Steffen Flessa, 2020. "Modelling Covid-19 under uncertainty: what can we expect?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(5), pages 665-668, July.
    6. Candio, Paolo & Meads, David & Hill, Andrew J. & Bojke, Laura, 2020. "Modelling the impact of physical activity on public health: A review and critique," Health Policy, Elsevier, vol. 124(10), pages 1155-1164.
    7. Tazio Vanni & Jonathan Karnon & Jason Madan & Richard White & W. Edmunds & Anna Foss & Rosa Legood, 2011. "Calibrating Models in Economic Evaluation," PharmacoEconomics, Springer, vol. 29(1), pages 35-49, January.
    8. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Steffen Flessa & Dominik Dietz & Elisabete Weiderpass, 2016. "Health policy support under extreme uncertainty: the case of cervical cancer in Cambodia," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 183-218, November.
    10. Jonathan Karnon & Jill Carlton & Carolyn Czoski-Murray & Kevin Smith, 2009. "Informing disinvestment through cost-effectiveness modelling," Applied Health Economics and Health Policy, Springer, vol. 7(1), pages 1-9, March.
    11. Victoria A Wade & Jonathan Karnon & Jaklin A Eliott & Janet E Hiller, 2012. "Home Videophones Improve Direct Observation in Tuberculosis Treatment: A Mixed Methods Evaluation," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    12. Maria DeYoreo & Iris Lansdorp-Vogelaar & Amy B. Knudsen & Karen M. Kuntz & Ann G. Zauber & Carolyn M. Rutter, 2020. "Validation of Colorectal Cancer Models on Long-term Outcomes from a Randomized Controlled Trial," Medical Decision Making, , vol. 40(8), pages 1034-1040, November.
    13. Vahab Vahdat & Oguzhan Alagoz & Jing Voon Chen & Leila Saoud & Bijan J. Borah & Paul J. Limburg, 2023. "Calibration and Validation of the Colorectal Cancer and Adenoma Incidence and Mortality (CRC-AIM) Microsimulation Model Using Deep Neural Networks," Medical Decision Making, , vol. 43(6), pages 719-736, August.
    14. Jonathan Karnon & Tazio Vanni, 2011. "Calibrating Models in Economic Evaluation," PharmacoEconomics, Springer, vol. 29(1), pages 51-62, January.
    15. Stavroula A Chrysanthopoulou, 2017. "MILC: A Microsimulation Model of the Natural History of Lung Cancer," International Journal of Microsimulation, International Microsimulation Association, vol. 10(3), pages 5-26.
    16. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    17. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    18. Sophie Whyte & Cathal Walsh & Jim Chilcott, 2011. "Bayesian Calibration of a Natural History Model with Application to a Population Model for Colorectal Cancer," Medical Decision Making, , vol. 31(4), pages 625-641, July.
    19. Alex van der Steen & Joost van Rosmalen & Sonja Kroep & Frank van Hees & Ewout W. Steyerberg & Harry J. de Koning & Marjolein van Ballegooijen & Iris Lansdorp-Vogelaar, 2016. "Calibrating Parameters for Microsimulation Disease Models," Medical Decision Making, , vol. 36(5), pages 652-665, July.
    20. Eleanor J. Murray & James M. Robins & George R. Seage III & Sara Lodi & Emily P. Hyle & Krishna P. Reddy & Kenneth A. Freedberg & Miguel A. Hernán, 2018. "Using Observational Data to Calibrate Simulation Models," Medical Decision Making, , vol. 38(2), pages 212-224, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:30:y:2012:i:2:p:119-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.