IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i1d10.1007_s42985-020-00059-3.html
   My bibliography  Save this article

Stochastic optimal transport revisited

Author

Listed:
  • Toshio Mikami

    (Tsuda University)

Abstract

We prove the Duality Theorems for the stochastic optimal transportation problems with a convex cost function without a regularity assumption that is often supposed in the proof of the lower semicontinuity of an action integral. In our new approach, we prove that the stochastic optimal transportation problems with a convex cost function are equivalent to a class of variational problems for the Fokker–Planck equation, which lets us revisit them. It is done by the so-called superposition principle and by an idea from the Mather theory. The superposition principle is the construction of a semimartingale from the Fokker–Planck equation and can be considered a class of the so-called marginal problems that construct stochastic processes from given marginal distributions. It was first considered in stochastic mechanics by Nelson, called Nelson’s problem, and was proved by Carlen first. The semimartingale is called the Nelson process, provided it is Markovian. We also consider the Markov property of a minimizer of the stochastic optimal transportation problem with a nonconvex cost in a one-dimensional case. In the proof, the superposition principle and the minimizer of an optimal transportation problem with a concave cost function play crucial roles. Lastly, we prove the semiconcavity and the Lipschitz continuity of Schrödinger’s problem that is a typical example of the stochastic optimal transportation problem.

Suggested Citation

  • Toshio Mikami, 2021. "Stochastic optimal transport revisited," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-26, February.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00059-3
    DOI: 10.1007/s42985-020-00059-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-020-00059-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-020-00059-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Edward, 1984. "Quantum fluctuations — An introduction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 124(1), pages 509-519.
    2. Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
    3. Mikami, Toshio & Thieullen, Michèle, 2006. "Duality theorem for the stochastic optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1815-1835, December.
    4. Rüschendorf, L. & Thomsen, W., 1993. "Note on the Schrödinger equation and I-projections," Statistics & Probability Letters, Elsevier, vol. 17(5), pages 369-375, August.
    5. Mikami, Toshio, 1998. "Equivalent conditions on the central limit theorem for a sequence of probability measures on R," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 237-242, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Daudin, 2022. "Optimal Control of Diffusion Processes with Terminal Constraint in Law," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 1-41, October.
    2. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    3. Ivan Guo & Gregoire Loeper, 2018. "Path Dependent Optimal Transport and Model Calibration on Exotic Derivatives," Papers 1812.03526, arXiv.org, revised Sep 2020.
    4. Butucea, Cristina & Delmas, Jean-François & Dutfoy, Anne & Fischer, Richard, 2015. "Maximum entropy copula with given diagonal section," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 61-81.
    5. Mikami, Toshio & Thieullen, Michèle, 2006. "Duality theorem for the stochastic optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1815-1835, December.
    6. Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2016. "On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 671-691, May.
    7. Gramer Erhard, 2000. "Probability Measures With Given Marginals And Conditionals: I-Projections And Conditional Iterative Proportional Fitting," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 311-330, March.
    8. Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
    9. Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
    10. Luo, Peng & Menoukeu-Pamen, Olivier & Tangpi, Ludovic, 2022. "Strong solutions of forward–backward stochastic differential equations with measurable coefficients," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 1-22.
    11. Lassalle, Rémi & Cruzeiro, Ana Bela, 2019. "An intrinsic calculus of variations for functionals of laws of semi-martingales," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3585-3618.
    12. Hà Quang Minh, 2023. "Entropic Regularization of Wasserstein Distance Between Infinite-Dimensional Gaussian Measures and Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 36(1), pages 201-296, March.
    13. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    14. Montacer Essid & Michele Pavon, 2019. "Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 23-60, April.
    15. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00059-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.