Stochastic optimal transport revisited
Author
Abstract
Suggested Citation
DOI: 10.1007/s42985-020-00059-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mikami, Toshio, 1998. "Equivalent conditions on the central limit theorem for a sequence of probability measures on R," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 237-242, March.
- Nelson, Edward, 1984. "Quantum fluctuations — An introduction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 124(1), pages 509-519.
- Mikami, Toshio & Thieullen, Michèle, 2006. "Duality theorem for the stochastic optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1815-1835, December.
- Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
- Rüschendorf, L. & Thomsen, W., 1993. "Note on the Schrödinger equation and I-projections," Statistics & Probability Letters, Elsevier, vol. 17(5), pages 369-375, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gramer Erhard, 2000. "Probability Measures With Given Marginals And Conditionals: I-Projections And Conditional Iterative Proportional Fitting," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 311-330, March.
- Samuel Daudin, 2022. "Optimal Control of Diffusion Processes with Terminal Constraint in Law," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 1-41, October.
- Lassalle, Rémi & Cruzeiro, Ana Bela, 2019. "An intrinsic calculus of variations for functionals of laws of semi-martingales," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3585-3618.
- Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
- Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
- Ivan Guo & Gregoire Loeper, 2018. "Path Dependent Optimal Transport and Model Calibration on Exotic Derivatives," Papers 1812.03526, arXiv.org, revised Sep 2020.
- Hà Quang Minh, 2023. "Entropic Regularization of Wasserstein Distance Between Infinite-Dimensional Gaussian Measures and Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 36(1), pages 201-296, March.
- Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
- Butucea, Cristina & Delmas, Jean-François & Dutfoy, Anne & Fischer, Richard, 2015. "Maximum entropy copula with given diagonal section," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 61-81.
- Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
- Mikami, Toshio & Thieullen, Michèle, 2006. "Duality theorem for the stochastic optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1815-1835, December.
- Montacer Essid & Michele Pavon, 2019. "Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 23-60, April.
- Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2016. "On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 671-691, May.
- Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
- Luo, Peng & Menoukeu-Pamen, Olivier & Tangpi, Ludovic, 2022. "Strong solutions of forward–backward stochastic differential equations with measurable coefficients," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 1-22.
More about this item
Keywords
Stochastic optimal transport; Superposition principle; Nelson process; Marginal problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00059-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.