IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i4d10.1007_s00291-024-00745-3.html
   My bibliography  Save this article

Police service district planning

Author

Listed:
  • Tobias Vlćek

    (Universität Hamburg)

  • Knut Haase

    (Universität Hamburg)

  • Malte Fliedner

    (Universität Hamburg)

  • Tobias Cors

    (Universität Hamburg)

Abstract

We propose a new framework to address the territory design problem of emergency services in collaboration with two police authorities in Europe. Our framework serves as a strategic decision support system to assess different districting layouts, department locations, staffing decisions and dispatching strategies. First, we introduce a novel modification of the p-median problem with a combined approach to the contiguity and compactness of district layouts solvable by a commercial solver. Second, we utilize a new discrete event simulation that accounts for the variability of spatial and temporal incident patterns and driving times to evaluate the district layouts according to several criteria based upon up to 1.8 million historical incidents. Our simulation results demonstrate that our proposed district layouts can lead to a reduction of the response time by up to 14.52% while also lowering the dispatch time, the overall driving time, and the number of unanswered calls for service. Additionally, we examine the computational complexity of optimally locating district centers and analyze the more restricted problem of optimally reassigning districts to fixed district centers.

Suggested Citation

  • Tobias Vlćek & Knut Haase & Malte Fliedner & Tobias Cors, 2024. "Police service district planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1029-1061, December.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00745-3
    DOI: 10.1007/s00291-024-00745-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00745-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00745-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. María Salazar-Aguilar & Roger Ríos-Mercado & Mauricio Cabrera-Ríos, 2011. "New Models for Commercial Territory Design," Networks and Spatial Economics, Springer, vol. 11(3), pages 487-507, September.
    2. Sarah Dunnett & Johanna Leigh & Lisa Jackson, 2019. "Optimising police dispatch for incident response in real time," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(2), pages 269-279, February.
    3. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Background," Management Science, INFORMS, vol. 24(12), pages 1280-1290, August.
    4. Linda Green & Peter Kolesar, 1989. "Testing the Validity of a Queueing Model of Police Patrol," Management Science, INFORMS, vol. 35(2), pages 127-148, February.
    5. Andris A. Zoltners & Prabhakant Sinha, 1983. "Sales Territory Alignment: A Review and Model," Management Science, INFORMS, vol. 29(11), pages 1237-1256, November.
    6. Haase, Knut & Müller, Sven, 2014. "Upper and lower bounds for the sales force deployment problem with explicit contiguity constraints," European Journal of Operational Research, Elsevier, vol. 237(2), pages 677-689.
    7. Pieter L. van den Berg & Guido A. G. Legemaate & Rob D. van der Mei, 2017. "Increasing the Responsiveness of Firefighter Services by Relocating Base Stations in Amsterdam," Interfaces, INFORMS, vol. 47(4), pages 352-361, August.
    8. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    9. Anuj Mehrotra & Ellis L. Johnson & George L. Nemhauser, 1998. "An Optimization Based Heuristic for Political Districting," Management Science, INFORMS, vol. 44(8), pages 1100-1114, August.
    10. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Capabilities and Algorithms," Management Science, INFORMS, vol. 24(12), pages 1291-1300, August.
    11. S. W. Hess & J. B. Weaver & H. J. Siegfeldt & J. N. Whelan & P. A. Zitlau, 1965. "Nonpartisan Political Redistricting by Computer," Operations Research, INFORMS, vol. 13(6), pages 998-1006, December.
    12. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    13. Samuel E. Bodily, 1978. "Police Sector Design Incorporating Preferences of Interest Groups for Equality and Efficiency," Management Science, INFORMS, vol. 24(12), pages 1301-1313, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Adler & Alfred Hakkert & Jonathan Kornbluth & Tal Raviv & Mali Sher, 2014. "Location-allocation models for traffic police patrol vehicles on an interurban network," Annals of Operations Research, Springer, vol. 221(1), pages 9-31, October.
    2. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    3. Camacho-Collados, M. & Liberatore, F. & Angulo, J.M., 2015. "A multi-criteria Police Districting Problem for the efficient and effective design of patrol sector," European Journal of Operational Research, Elsevier, vol. 246(2), pages 674-684.
    4. Shixiang Zhu & He Wang & Yao Xie, 2022. "Data-Driven Optimization for Atlanta Police-Zone Design," Interfaces, INFORMS, vol. 52(5), pages 412-432, September.
    5. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    6. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    7. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    8. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.
    9. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    10. Alexander Butsch & Jörg Kalcsics & Gilbert Laporte, 2014. "Districting for Arc Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 809-824, November.
    11. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    12. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    13. Sommer Gentry & Eric Chow & Allan Massie & Dorry Segev, 2015. "Gerrymandering for Justice: Redistricting U.S. Liver Allocation," Interfaces, INFORMS, vol. 45(5), pages 462-480, October.
    14. Fernando Tavares-Pereira & José Figueira & Vincent Mousseau & Bernard Roy, 2007. "Multiple criteria districting problems," Annals of Operations Research, Springer, vol. 154(1), pages 69-92, October.
    15. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    16. Ríos-Mercado, Roger Z. & López-Pérez, J. Fabián, 2013. "Commercial territory design planning with realignment and disjoint assignment requirements," Omega, Elsevier, vol. 41(3), pages 525-535.
    17. Ram Gopalan & Steven O. Kimbrough & Frederic H. Murphy & Nicholas Quintus, 2013. "The Philadelphia Districting Contest: Designing Territories for City Council Based Upon the 2010 Census," Interfaces, INFORMS, vol. 43(5), pages 477-489, October.
    18. Han, Jialin & Hu, Yaoguang & Mao, Mingsong & Wan, Shuping, 2020. "A multi-objective districting problem applied to agricultural machinery maintenance service network," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1120-1130.
    19. Bender, Matthias & Kalcsics, Jörg & Meyer, Anne, 2020. "Districting for parcel delivery services – A two-Stage solution approach and a real-World case study," Omega, Elsevier, vol. 96(C).
    20. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:4:d:10.1007_s00291-024-00745-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.