IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v24y1978i12p1291-1300.html
   My bibliography  Save this article

A Patrol Car Allocation Model: Capabilities and Algorithms

Author

Listed:
  • Jan M. Chaiken

    (The Rand Corporation, Santa Monica, California)

  • Peter Dormont

    (Mathematica, Inc., Princeton, New Jersey)

Abstract

A computer program has been designed for specifying the number of police patrol cars that should be on duty in each geographical command of a city at various times of day on each day of the week. It incorporates, by user option, nearly all the desirable features of earlier allocation programs, together with several improvements. It calculates performance statistics for the current allocation of patrol cars or any allocation proposed by the user. In addition, it has two prescriptive capabilities: (1) determining the minimum number of patrol cars needed during each tour in each command to meet specified constraints on performance measures, and (2) allocating a specified total number of car-hours by time and/or geography so as to optimize one of several available objective functions. The main technical innovation in the model is that it allows one tour in each day to overlay two other tours. A heuristic algorithm allocates car-hours when there is such an overlay tour; it is optimal when the overlay tour has the same duration as the tours it overlays.

Suggested Citation

  • Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Capabilities and Algorithms," Management Science, INFORMS, vol. 24(12), pages 1291-1300, August.
  • Handle: RePEc:inm:ormnsc:v:24:y:1978:i:12:p:1291-1300
    DOI: 10.1287/mnsc.24.12.1291
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.24.12.1291
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.24.12.1291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2018. "Urban rail patrolling: a game theoretic approach," Journal of Transportation Security, Springer, vol. 11(1), pages 23-40, June.
    2. Tobias Vlćek & Knut Haase & Malte Fliedner & Tobias Cors, 2024. "Police service district planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1029-1061, December.
    3. Nicole Adler & Alfred Hakkert & Jonathan Kornbluth & Tal Raviv & Mali Sher, 2014. "Location-allocation models for traffic police patrol vehicles on an interurban network," Annals of Operations Research, Springer, vol. 221(1), pages 9-31, October.
    4. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    5. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    6. Keskin, Burcu B. & Li, Shirley (Rong) & Steil, Dana & Spiller, Sarah, 2012. "Analysis of an integrated maximum covering and patrol routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 215-232.
    7. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    8. Camacho-Collados, M. & Liberatore, F. & Angulo, J.M., 2015. "A multi-criteria Police Districting Problem for the efficient and effective design of patrol sector," European Journal of Operational Research, Elsevier, vol. 246(2), pages 674-684.
    9. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    10. Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
    11. Hall, Randolph, 2000. "Incident Dispatching, Clearance and Delay," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2pp689vn, Institute of Transportation Studies, UC Berkeley.
    12. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    13. Hall, Randolph W., 2002. "Incident dispatching, clearance and delay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(1), pages 1-16, January.
    14. Kyle Y. Lin & Michael P. Atkinson & Kevin D. Glazebrook, 2014. "Optimal patrol to uncover threats in time when detection is imperfect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 557-576, December.
    15. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    16. Lei, Chao & Zhang, Qian & Ouyang, Yanfeng, 2017. "Planning of parking enforcement patrol considering drivers’ parking payment behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 375-392.
    17. Hall, Randolph W., 2001. "Incident Management: Process Analysis and Improvement," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1jf6j37t, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:24:y:1978:i:12:p:1291-1300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.