IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i2d10.1007_s00291-021-00630-3.html
   My bibliography  Save this article

Pareto-based grouping meta-heuristic algorithm for humanitarian relief logistics with multistate network reliability

Author

Listed:
  • Maliheh Khorsi

    (Tarbiat Modares University)

  • Seyed Kamal Chaharsooghi

    (Tarbiat Modares University)

  • Ali Husseinzadeh Kashan

    (Tarbiat Modares University)

  • Ali Bozorgi-Amiri

    (University of Tehran)

Abstract

This article considers a biobjective location-routing problem to deliver relief resources to the victims affected by a disaster under uncertainty in demand, transportation infrastructure, and travel time. Since transportation networks are exposed to a considerable level of uncertainty, choosing the reliable path for relief goods to be transmitted to the affected areas ensures the arrival of these supplies. For the first time, route reliability is calculated based on the multistate theory, and the universal generating function technique is used for network reliability assessment. The problem is formulated as a multiperiod robust biobjective mixed-integer programming model. Two objective functions are considered: (a) decreasing the sum of arrival times of relief vehicles at the demand nodes for delivering aids to the affected areas, and (b) increasing the minimum route reliability for all the serving vehicles. A novel multiobjective grouping algorithm is proposed to obtain the Pareto-optimal solutions of the problem. Then, its performance is compared with two other multiobjective grouping algorithms. To evaluate the solution method, the algorithms are implemented on various test problems and compared statistically. A case study is presented to illustrate the potential applicability of our model. Additionally, to determine the effect of the changes in the main parameters of the problem on the value of objective functions, the sensitivity analyses are performed and the managerial insights are given.

Suggested Citation

  • Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2021. "Pareto-based grouping meta-heuristic algorithm for humanitarian relief logistics with multistate network reliability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 327-365, June.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00630-3
    DOI: 10.1007/s00291-021-00630-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00630-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00630-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Zhang, Bo & Li, Hui & Li, Shengguo & Peng, Jin, 2018. "Sustainable multi-depot emergency facilities location-routing problem with uncertain information," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 506-520.
    3. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    4. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    6. Mina Husseinzadeh Kashan & Ali Husseinzadeh Kashan & Nasim Nahavandi, 2013. "A novel differential evolution algorithm for binary optimization," Computational Optimization and Applications, Springer, vol. 55(2), pages 481-513, June.
    7. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    8. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    9. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    10. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    11. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    12. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, February.
    13. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2022. "Solving the humanitarian multi-trip cumulative capacitated routing problem via a grouping metaheuristic algorithm," Annals of Operations Research, Springer, vol. 319(1), pages 173-210, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changshi Liu & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2019. "Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from the Perspective of Fairness," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    2. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    5. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    8. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    9. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    10. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    11. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    12. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    13. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    14. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    15. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    16. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    17. Wang, Qingyi & Nie, Xiaofeng, 2023. "A location-inventory-routing model for distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    19. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    20. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00630-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.