IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v60y2023i3d10.1007_s12597-023-00642-3.html
   My bibliography  Save this article

Solving zero-sum two-person game with triangular fuzzy number payoffs using new fully fuzzy linear programming models

Author

Listed:
  • Gaurav Sharma

    (University of Rajasthan
    University of Delhi)

  • Sapan Kumar Das

    (Ministry of Finance)

  • Ganesh Kumar

    (University of Rajasthan)

Abstract

Many situations involve uncertainty, which we can handle with the help of triangular fuzzy numbers (TFNs). Many scenarios arise in which players in a matrix game cannot reliably estimate their payoffs using crisp numbers, as in real-world scenarios. In these circumstances, TFNs are helpful in game theory. Solving a zero-sum two-player game when all the decision variables and parameters are fuzzy is a worldwide topic of interest to scholars. This article presents a novel solution methodology to solve the zero-sum two-person fully fuzzy matrix game. The payoff matrix, decision variables, and strategies are all taken as TFNs. Two subsidiaries’ fully fuzzy linear programming problem (FFLPP) models for both players have been developed to achieve the objective. These two FFLPP models are converted into crisp linear programming problems (LPPs). This procedure uses a ranking approach to the objective function and introduces fuzzy surplus and fuzzy slack variables in constraints. These crisp LPPs are then solved using TORA software (2.0 version) to get optimal strategies and results. The proposed solution methodology in the paper is followed by a real-world example, ‘Plastic Ban Problem’, and two other examples to prove its applicability and validity.

Suggested Citation

  • Gaurav Sharma & Sapan Kumar Das & Ganesh Kumar, 2023. "Solving zero-sum two-person game with triangular fuzzy number payoffs using new fully fuzzy linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1456-1487, September.
  • Handle: RePEc:spr:opsear:v:60:y:2023:i:3:d:10.1007_s12597-023-00642-3
    DOI: 10.1007/s12597-023-00642-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00642-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00642-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Ankan Bhaumik & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoners’ dilemma game theory using TOPSIS: a case study on Human-trafficking," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 797-816, June.
    3. Sapan Kumar Das & T. Mandal & Diptiranjan Behera, 2019. "A new approach for solving fully fuzzy linear programming problem," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 15(3), pages 296-309.
    4. Li, Deng-Feng, 2012. "A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 223(2), pages 421-429.
    5. El-Saeed Ammar & M. G. Brikaa & Entsar Abdel-Rehim, 2019. "A study on two-person zero-sum rough interval continuous differential games," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 689-716, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    3. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    4. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    5. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    7. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    8. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    11. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    12. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    14. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Bertrand Crettez & Naila Hayek & Peter M. Kort, 2021. "A Dynamic Multi-Objective Duopoly Game with Capital Accumulation and Pollution," Mathematics, MDPI, vol. 9(16), pages 1-34, August.
    19. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    20. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:60:y:2023:i:3:d:10.1007_s12597-023-00642-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.