IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v59y2022i2d10.1007_s12597-021-00554-0.html
   My bibliography  Save this article

A sustainable production inventory model for profit maximization under optimum raw material input rate during production

Author

Listed:
  • Nabajyoti Bhattacharjee

    (Assam University)

  • Nabendu Sen

    (Assam University)

Abstract

A production inventory in bioethanol production consists of three basic segments; raw material ordering, fermentation plant and finished product inventory. A sustainable production process focuses on the optimal utilization of raw materials in order to reduce the negative impact on the environment. In most of the production inventory model, the rate of production is variable which changes with time at a constant amount. In this present paper, an effort has been made to develop a sustainable economic production quantity (EPQ) model with a variable production rate. Although the production rate is dependent on the amount of raw material used for the fermentation process and the rate of fermentation. Further, the production rate is a dependent variable of the maximum input of raw material in the production unit. Model is studied under four different environments; without green investment, with green investment, with variable labour cost and with variable labour cost together with overtime cost. Now to solve the formulated model, weighted particle swarm optimization (Weighted PSO) and constriction factor particle swarm optimization (Constriction PSO) are applied and the optimality is established through statistical analysis and Taguchi L9 design together with the graphical representations of convergence characteristics. Model is validated through numerical examples along with the sensitivity analysis of parameters and managerial implications are provided for effective decision making.

Suggested Citation

  • Nabajyoti Bhattacharjee & Nabendu Sen, 2022. "A sustainable production inventory model for profit maximization under optimum raw material input rate during production," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 667-693, June.
  • Handle: RePEc:spr:opsear:v:59:y:2022:i:2:d:10.1007_s12597-021-00554-0
    DOI: 10.1007/s12597-021-00554-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-021-00554-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-021-00554-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen H. Hu & Chia-Hsiang Chen & Lance Hongwei Huang & Ming-Hsiu Chung & Yi-Chen Lan & Zhonghua Chen, 2019. "Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case Study on Taiwanese Dongshan Tea," Energies, MDPI, vol. 12(1), pages 1-13, January.
    2. YuJan Shen & KuanFu Shen & ChihTe Yang, 2019. "A Production Inventory Model for Deteriorating Items with Collaborative Preservation Technology Investment Under Carbon Tax," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    3. Sana, Shib Sankar, 2010. "A production-inventory model in an imperfect production process," European Journal of Operational Research, Elsevier, vol. 200(2), pages 451-464, January.
    4. Zhang, Bin & Xu, Liang, 2013. "Multi-item production planning with carbon cap and trade mechanism," International Journal of Production Economics, Elsevier, vol. 144(1), pages 118-127.
    5. Subhajit Das & Amalesh Kumar Manna & Emad E. Mahmoud & Kholod M. Abualnaja & Abdel-Haleem Abdel-Aty & Ali Akbar Shaikh & Hijaz Ahmad, 2020. "Product Replacement Policy in a Production Inventory Model with Replacement Period-, Stock-, and Price-Dependent Demand," Journal of Mathematics, Hindawi, vol. 2020, pages 1-8, December.
    6. Trung-Hieu Tran & Yong Mao & Peer-Olaf Siebers, 2019. "Optimising Decarbonisation Investment for Firms towards Environmental Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    7. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    8. K. M. Kamna & Prerna Gautam & Chandra K. Jaggi, 2021. "Sustainable inventory policy for an imperfect production system with energy usage and volume agility," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 44-52, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapan Kumar Datta & Sayantan Datta & Adrijit Goswami, 2024. "A sustainable bi-objective inventory model with source-based emissions and plan-based green investments under inflation and the present value of money," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 91-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabajyoti Bhattacharjee & Nabendu Sen, 2021. "An inventory model to study the effect of the probabilistic rate of carbon emission on the profit earned by a supplier," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(4), pages 5-33.
    2. Mukunda Choudhury & Sujit Kumar De & Gour Chandra Mahata, 2023. "A pollution-sensitive multistage production-inventory model for deteriorating items considering expiration date under Stackelberg game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11847-11884, October.
    3. Doo-Ho Lee & Jong-Chul Yoon, 2022. "Decisions on Pricing, Sustainability Effort, and Carbon Cap under Wholesale Price and Cost-Sharing Contracts," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    4. YuJan Shen & KuanFu Shen & ChihTe Yang, 2019. "A Production Inventory Model for Deteriorating Items with Collaborative Preservation Technology Investment Under Carbon Tax," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    5. Suchitra Pattnaik & Mitali Madhusmita Nayak & Stefano Abbate & Piera Centobelli, 2021. "Recent Trends in Sustainable Inventory Models: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    6. Mubashir Hayat & Bashir Salah & Misbah Ullah & Iftikhar Hussain & Razaullah Khan, 2020. "Shipment Policy for an Economic Production Quantity Model Considering Imperfection and Transportation Cost," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    7. Istvan Rado & Mei-Fei Lu & I-Chen Lin & Ken Aoo, 2021. "Societal Entrepreneurship for Sustainable Asian Rural Societies: A Multi-Sectoral Social Capital Approach in Thailand, Taiwan, and Japan," Sustainability, MDPI, vol. 13(5), pages 1-28, March.
    8. Dong, Ciwei & Liu, Qingyu & Shen, Bin, 2019. "To be or not to be green? Strategic investment for green product development in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 193-227.
    9. Yenipazarli, Arda, 2016. "Managing new and remanufactured products to mitigate environmental damage under emissions regulation," European Journal of Operational Research, Elsevier, vol. 249(1), pages 117-130.
    10. Chirantan Mondal & Bibhas C. Giri, 2022. "Analyzing a manufacturer-retailer sustainable supply chain under cap-and-trade policy and revenue sharing contract," Operational Research, Springer, vol. 22(4), pages 4057-4092, September.
    11. Hong, Zhaofu & Dai, Wei & Luh, Hsing & Yang, Chenchen, 2018. "Optimal configuration of a green product supply chain with guaranteed service time and emission constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 663-677.
    12. Yi Zheng & Huchang Liao & Xue Yang, 2016. "Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers," Sustainability, MDPI, vol. 8(1), pages 1-19, January.
    13. Quemin, Simon & Trotignon, Raphaël, 2021. "Emissions trading with rolling horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    14. Teresa Famulska & Jan Kaczmarzyk & Małgorzata Grząba-Włoszek, 2022. "Environmental Taxes in the Member States of the European Union—Trends in Energy Taxes," Energies, MDPI, vol. 15(22), pages 1-20, November.
    15. Wen-Hsien Tsai & Shang-Yu Lai & Chu-Lun Hsieh, 2023. "Exploring the impact of different carbon emission cost models on corporate profitability," Annals of Operations Research, Springer, vol. 322(1), pages 41-74, March.
    16. Cao, Erbao & Du, Lingxia & Ruan, Junhu, 2019. "Financing preferences and performance for an emission-dependent supply chain: Supplier vs. bank," International Journal of Production Economics, Elsevier, vol. 208(C), pages 383-399.
    17. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    18. Xu, Xiaoping & He, Ping & Xu, Hao & Zhang, Quanpeng, 2017. "Supply chain coordination with green technology under cap-and-trade regulation," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 433-442.
    19. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    20. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:59:y:2022:i:2:d:10.1007_s12597-021-00554-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.