IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i2d10.1007_s12597-019-00422-y.html
   My bibliography  Save this article

An opportunistic group maintenance model for the multi-unit series system employing Jaya algorithm

Author

Listed:
  • Aseem K. Mishra

    (Shiv Nadar University)

  • Divya Shrivastava

    (Shiv Nadar University)

  • Prem Vrat

    (North Cap University)

Abstract

Opportunistic maintenance approaches deal with performing group preventive maintenance (PM) on the other units in a series system due to the intervention of any scheduled PM of a component. Simultaneous maintenance actions show better economic performance due to the direct reduction of downtime costs and production losses. However, it is uneconomical to perform maintenance on all units simultaneously. To address this issue, various simulation and optimization approaches including Markov chains, genetic algorithm etc. have been applied in order to achieve optimum solutions in group maintenance models. However, most of these strategies suffer from intractability as the problem size increases. In the present paper, we develop an efficient opportunistic grouping methodology for the multi-unit series system while considering imperfect preventive maintenance. The aim is to obtain an optimum PM interval and grouping of units to minimize the expected total system maintenance cost per unit time during the mission. A recently developed meta-heuristic named ‘Jaya algorithm’ is applied to optimize the objective function. The effectiveness of the proposed approach is examined with three maintenance models: single unit model, mono-group model and the proposed opportunistic group model. Results reveal that the proposed group maintenance model results in 19% cost savings as compared to the mono-group model and 71% compared to the single component maintenance model.

Suggested Citation

  • Aseem K. Mishra & Divya Shrivastava & Prem Vrat, 2020. "An opportunistic group maintenance model for the multi-unit series system employing Jaya algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 603-628, June.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:2:d:10.1007_s12597-019-00422-y
    DOI: 10.1007/s12597-019-00422-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00422-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00422-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald Martinod & Olivier Bistorin & Leonel Castañeda & Nidhal Rezg, 2018. "Maintenance policy optimisation for multi-component systems considering degradation of components and imperfect maintenance actions," Post-Print hal-01922272, HAL.
    2. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    3. Cavalcante, C.A.V. & Lopes, R.S. & Scarf, P.A., 2018. "A general inspection and opportunistic replacement policy for one-component systems of variable quality," European Journal of Operational Research, Elsevier, vol. 266(3), pages 911-919.
    4. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    5. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    6. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2016. "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, Elsevier, vol. 85(C), pages 104-113.
    7. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    8. Laggoune, Radouane & Chateauneuf, Alaa & Aissani, Djamil, 2010. "Impact of few failure data on the opportunistic replacement policy for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 108-119.
    9. Roy Radner & Dale W. Jorgenson, 1963. "Opportunistic Replacement of a Single Part in the Presence of Several Monitored Parts," Management Science, INFORMS, vol. 10(1), pages 70-84, October.
    10. Truong Ba, H. & Cholette, M.E. & Borghesani, P. & Zhou, Y. & Ma, L., 2017. "Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 151-161.
    11. Divya Pandey & Makarand S. Kulkarni & Prem Vrat, 2010. "A model for optimal maintenance interval incorporating the cost of rejections in manufacturing," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 7(2), pages 219-232, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mena, R. & Viveros, P. & Zio, E. & Campos, S., 2021. "An optimization framework for opportunistic planning of preventive maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Zhou, Xiaojun & Ning, Xiaohan, 2021. "Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    6. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    9. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    12. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    14. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Wu, Jing & Qian, Cunhua & Dohi, Tadashi, 2024. "Optimal opportunity-based age replacement policies in discrete time," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    18. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    19. Zhou, Xiaojun & Shi, Kailong, 2019. "Capacity failure rate based opportunistic maintenance modeling for series-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 46-53.
    20. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:2:d:10.1007_s12597-019-00422-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.