IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i3d10.1007_s12351-024-00856-3.html
   My bibliography  Save this article

Stochastic transitions of a mixed-integer linear programming model for the construction supply chain: chance-constrained programming and two-stage programming

Author

Listed:
  • Aspasia Koutsokosta

    (Democritus University of Thrace)

  • Stefanos Katsavounis

    (Democritus University of Thrace)

Abstract

This paper addresses the problem of optimal Construction Supply Chain (CSC) design and integration in deterministic and stochastic environments by providing a family of models for the optimization of a dynamic, multi-product, multi-site contractor-led CSC. With the objective of minimizing the total CSC cost, optimal decisions are made on network design, production, inventory holding and transportation, while also considering discounts for bulk purchases, logistics centers, on-site shortages and an inventory-preparation phase. The models integrate the operations of temporal and project-based supply chains into a sustainable network with repetitive flows, large scope contracts and economies of scale to provide the main contractor with a versatile optimization framework which can account for different levels of uncertainty. The novelty of this paper lies in providing a flexible integrative optimization CSC tool that accounts for multiple CSC actors (suppliers and/or logistics centers), projects, products, time periods, operations, and different decision-making environments depending on the nature of the problem and the risk-attitude of the decision maker. This paper contributes to the fast-growing research field of stochastic CSC optimization showcasing stochastic transitions of a mixed-integer linear programming model to chance-constrained programming and two-stage programming and incorporating uncertainties with different types of probability distributions or scenarios, and even interdependent uncertainties—approaches that have not been explored extensively in the CSC context. The results reveal that the stochastic approaches sacrifice the minimum cost of deterministic solutions having average settings to obtain robust well-hedged solutions over the possible parameter variations and that the selection of a suitable method for modeling uncertainty is context-dependent.

Suggested Citation

  • Aspasia Koutsokosta & Stefanos Katsavounis, 2024. "Stochastic transitions of a mixed-integer linear programming model for the construction supply chain: chance-constrained programming and two-stage programming," Operational Research, Springer, vol. 24(3), pages 1-57, September.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00856-3
    DOI: 10.1007/s12351-024-00856-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00856-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00856-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahra Mohammadnazari & Seyed Farid Ghannadpour, 2021. "Sustainable construction supply chain management with the spotlight of inventory optimization under uncertainty," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10937-10972, July.
    2. Tadeusz Sawik, 2018. "Supply Chain Disruption Management Using Stochastic Mixed Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-3-319-58823-0, July-Dece.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    5. Juping Shao & Yanan Sun & Bernd Noche, 2015. "Optimization of Integrated Supply Chain Planning under Multiple Uncertainty," Springer Books, Springer, edition 127, number 978-3-662-47250-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    2. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    3. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    4. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    5. Aouam, Tarik & Brahimi, Nadjib, 2013. "Integrated production planning and order acceptance under uncertainty: A robust optimization approach," European Journal of Operational Research, Elsevier, vol. 228(3), pages 504-515.
    6. Lu, Hao-Chun & Tsai, Shing Chih, 2024. "Generalized robust goal programming model," European Journal of Operational Research, Elsevier, vol. 319(2), pages 638-657.
    7. Mike G. Tsionas & Dionisis Philippas & Constantin Zopounidis, 2023. "Exploring Uncertainty, Sensitivity and Robust Solutions in Mathematical Programming Through Bayesian Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 205-227, June.
    8. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    10. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    11. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    13. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    14. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    15. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    16. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    17. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    18. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    19. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    20. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00856-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.