IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i2p638-657.html
   My bibliography  Save this article

Generalized robust goal programming model

Author

Listed:
  • Lu, Hao-Chun
  • Tsai, Shing Chih

Abstract

This study proposes a concise and generalized robust goal programming (RGP) model that simultaneously considers three types of goal functions – right-side penalties, left-side penalties, and both-side penalties – under uncertainties on both the left-hand side and right-hand side. It integrates common uncertainty sets for a comprehensive goal programming model. Experimental results reveal that our model consistently outperforms existing RGP models by incurring fewer penalties, demonstrating enhanced resilience and robustness. This advantage becomes evident when problem coefficients such as costs, profits, and human resource requirements deviate significantly from their default target levels due to real-world conditions. The proposed model not only extends the robustness of traditional goal programming and weighted fuzzy goal programming but also offers improved risk management across various practical scenarios.

Suggested Citation

  • Lu, Hao-Chun & Tsai, Shing Chih, 2024. "Generalized robust goal programming model," European Journal of Operational Research, Elsevier, vol. 319(2), pages 638-657.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:638-657
    DOI: 10.1016/j.ejor.2024.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:638-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.