IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i2d10.1007_s12351-024-00831-y.html
   My bibliography  Save this article

Disruption detection for a cognitive digital supply chain twin using hybrid deep learning

Author

Listed:
  • Mahmoud Ashraf

    (Egypt-Japan University of Science and Technology
    Alexandria University)

  • Amr Eltawil

    (Egypt-Japan University of Science and Technology
    Alexandria University)

  • Islam Ali

    (Egypt-Japan University of Science and Technology
    Alexandria University)

Abstract

Recent disruptive events, such as COVID-19 and Russia–Ukraine conflict, had a significant impact of global supply chains. Digital supply chain twins have been proposed in order to provide decision makers with an effective and efficient tool to mitigate disruption impact. This paper introduces a hybrid deep learning approach for disruption detection within a cognitive digital supply chain twin framework to enhance supply chain resilience. The proposed disruption detection module utilises a deep autoencoder neural network combined with a one-class support vector machine algorithm. In addition, long-short term memory neural network models are developed to identify the disrupted echelon and predict time-to-recovery from the disruption effect. The obtained information from the proposed approach will help decision-makers and supply chain practitioners make appropriate decisions aiming at minimizing negative impact of disruptive events based on real-time disruption detection data. The results demonstrate the trade-off between disruption detection model sensitivity, encountered delay in disruption detection, and false alarms. This approach has seldom been used in recent literature addressing this issue.

Suggested Citation

  • Mahmoud Ashraf & Amr Eltawil & Islam Ali, 2024. "Disruption detection for a cognitive digital supply chain twin using hybrid deep learning," Operational Research, Springer, vol. 24(2), pages 1-31, June.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:2:d:10.1007_s12351-024-00831-y
    DOI: 10.1007/s12351-024-00831-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00831-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00831-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavalcante, Ian M. & Frazzon, Enzo M. & Forcellini, Fernando A. & Ivanov, Dmitry, 2019. "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing," International Journal of Information Management, Elsevier, vol. 49(C), pages 86-97.
    2. Nguyen, H.D. & Tran, K.P. & Thomassey, S. & Hamad, M., 2021. "Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management," International Journal of Information Management, Elsevier, vol. 57(C).
    3. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    4. Albert Munoz & Michelle Dunbar, 2015. "On the quantification of operational supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6736-6751, November.
    5. Long Gao & Nan Yang & Renyu Zhang & Ting Luo, 2017. "Dynamic Supply Risk Management with Signal-Based Forecast, Multi-Sourcing, and Discretionary Selling," Production and Operations Management, Production and Operations Management Society, vol. 26(7), pages 1399-1415, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    2. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    4. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    5. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    7. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    8. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    9. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    10. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    12. Aghababaei, Mohammad T. (Siavash) & Costello, Seosamh B. & Ranjitkar, Prakash, 2021. "Measures to evaluate post-disaster trip resilience on road networks," Journal of Transport Geography, Elsevier, vol. 95(C).
    13. Potter, Andrew & Soroka, Anthony & Naim, Mohamed, 2022. "Regional resilience for rail freight transport," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Wang, Yingcong & Xiao, Renbin, 2016. "An ant colony based resilience approach to cascading failures in cluster supply network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 150-166.
    15. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    17. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Zhalechian, M. & Torabi, S. Ali & Mohammadi, M., 2018. "Hub-and-spoke network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 20-43.
    19. Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
    20. Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:2:d:10.1007_s12351-024-00831-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.