IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i3d10.1007_s12351-023-00791-9.html
   My bibliography  Save this article

A fill-and-reduce greedy algorithm for the container pre-marshalling problem

Author

Listed:
  • Ignacio Araya

    (Pontificia Universidad Católica de Valparaíso)

  • Martín Toledo

    (Pontificia Universidad Católica de Valparaíso)

Abstract

We address the Container Pre-Marshalling Problem (CPMP). The CPMP consists in ordering containers in stacks such that the retrieval of these containers is carried out without additional movements. The ordering has to be done in a minimum number of steps. Target-guided constructive heuristics report very good results in a short time. At each step, they select one poorly located container and rearrange it to an adequate position by a sequence of movements. The sequence of movements is generally generated by following a set of rules. In this work, we propose a different and more direct approach. Whenever possible, ordered stacks are filled by directly moving badly placed containers into them such that the containers become well placed. If it is not possible, then a stack is emptied or reduced to have more available slots, and the process is repeated. Unlike target-guided algorithms which rigidly adhere to a predefined sequence of movements for each badly placed container, our fill-and-reduce approach maintains the capacity to adapt to the evolving situation making choices based on the current state of the container stacks. The algorithm has shown superior performance compared to traditional target-guided heuristics, particularly in larger instances of classical benchmark sets. Furthermore, when embedded in a beam search algorithm, it reports the best results compared to traditional techniques that do not use machine learning.

Suggested Citation

  • Ignacio Araya & Martín Toledo, 2023. "A fill-and-reduce greedy algorithm for the container pre-marshalling problem," Operational Research, Springer, vol. 23(3), pages 1-29, September.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:3:d:10.1007_s12351-023-00791-9
    DOI: 10.1007/s12351-023-00791-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00791-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00791-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    2. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    3. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    4. Kevin Tierney & Dario Pacino & Stefan Voß, 2017. "Solving the pre-marshalling problem to optimality with A* and IDA," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 223-259, June.
    5. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    6. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    7. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    8. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    9. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    2. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    3. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    4. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    5. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    6. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Parreño, Francisco, 2022. "A beam search algorithm for minimizing crane times in premarshalling problems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1063-1078.
    7. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    8. Pfrommer, Jakob & Meyer, Anne & Tierney, Kevin, 2024. "Solving the unit-load pre-marshalling problem in block stacking storage systems with multiple access directions," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1054-1071.
    9. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    10. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    11. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    12. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    13. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    14. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    15. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    16. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    17. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    18. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    19. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    20. Jin, Bo & Yu, Mingzhu, 2021. "Note on the dominance rules in the exact algorithm for the container pre-marshalling problem by Tanaka & Tierney (2018)," European Journal of Operational Research, Elsevier, vol. 293(2), pages 802-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:3:d:10.1007_s12351-023-00791-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.