IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i3p1063-1078.html
   My bibliography  Save this article

A beam search algorithm for minimizing crane times in premarshalling problems

Author

Listed:
  • Parreño-Torres, Consuelo
  • Alvarez-Valdes, Ramon
  • Parreño, Francisco

Abstract

The premarshalling problem consists of sorting the containers placed in a bay of the container yard so that they can be retrieved in the order in which they will be required. We study the premarshalling problem with crane time minimization objective and develop a beam search algorithm, with some new elements adapted to the characteristics of the problem, to solve it. We propose various evaluation criteria, depending on the type of container movement, for its local evaluation; a new heuristic algorithm including local search for blue its global evaluation; and several new dominance rules. The computational study shows the contribution of each new element. The performance of the complete algorithm is tested on well-known benchmarks. The beam search algorithm matches all known optimal solutions, improves on the known suboptimal solutions, and obtains solutions for the largest instances, for which no solution had previously been found.

Suggested Citation

  • Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Parreño, Francisco, 2022. "A beam search algorithm for minimizing crane times in premarshalling problems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1063-1078.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1063-1078
    DOI: 10.1016/j.ejor.2022.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722000753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    2. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    3. Kevin Tierney & Dario Pacino & Stefan Voß, 2017. "Solving the pre-marshalling problem to optimality with A* and IDA," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 223-259, June.
    4. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    5. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    6. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    7. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    8. Wang, Ning & Jin, Bo & Lim, Andrew, 2015. "Target-guided algorithms for the container pre-marshalling problem," Omega, Elsevier, vol. 53(C), pages 67-77.
    9. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    10. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    11. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    12. Wang, Ning & Jin, Bo & Zhang, Zizhen & Lim, Andrew, 2017. "A feasibility-based heuristic for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 90-101.
    13. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    14. Parreño, F. & Alonso, M.T. & Alvarez-Valdes, R., 2020. "Solving a large cutting problem in the glass manufacturing industry," European Journal of Operational Research, Elsevier, vol. 287(1), pages 378-388.
    15. Peixin Ge & Ying Meng & Jiyin Liu & Lixin Tang & Ren Zhao, 2020. "Logistics optimisation of slab pre-marshalling problem in steel industry," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4050-4070, July.
    16. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    17. Libralesso, Luc & Fontan, Florian, 2021. "An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem," European Journal of Operational Research, Elsevier, vol. 291(3), pages 883-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    2. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    3. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    4. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    5. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    6. Pfrommer, Jakob & Meyer, Anne & Tierney, Kevin, 2024. "Solving the unit-load pre-marshalling problem in block stacking storage systems with multiple access directions," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1054-1071.
    7. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    8. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    9. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    10. Ignacio Araya & Martín Toledo, 2023. "A fill-and-reduce greedy algorithm for the container pre-marshalling problem," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    11. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    12. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    13. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    14. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    15. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    16. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    17. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    18. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    19. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    20. Wang, Ning & Jin, Bo & Zhang, Zizhen & Lim, Andrew, 2017. "A feasibility-based heuristic for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 90-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1063-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.