IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v97y2019i1d10.1007_s11069-019-03643-y.html
   My bibliography  Save this article

Consequences of dike breaches and dike overflow in a bifurcating river system

Author

Listed:
  • Anouk Bomers

    (University of Twente)

  • Ralph M. J. Schielen

    (University of Twente
    Ministry of Infrastructure and Water Management-Rijkswaterstaat)

  • Suzanne J. M. H. Hulscher

    (University of Twente)

Abstract

Currently, the effect of dike breaches on downstream discharge partitioning and flood risk is not addressed in flood safety assessments. In a bifurcating river system, a dike breach may cause overland flows which can change downstream flood risk and discharge partitioning. This study examines how dike breaches and overflow affect overland flow patterns and discharges of the rivers of the Rhine delta. For extreme discharges, an increase in flood risk along the river branch with the smallest discharge capacity was found, while flood risk along the other river branches was reduced. Therefore, dike breaches and resulting overland flow patterns must be included in flood safety assessments.

Suggested Citation

  • Anouk Bomers & Ralph M. J. Schielen & Suzanne J. M. H. Hulscher, 2019. "Consequences of dike breaches and dike overflow in a bifurcating river system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 309-334, May.
  • Handle: RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03643-y
    DOI: 10.1007/s11069-019-03643-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03643-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03643-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerardo Benito & Michel Lang & Mariano Barriendos & M. Llasat & Felix Francés & Taha Ouarda & Varyl Thorndycraft & Yehouda Enzel & Andras Bardossy & Denis Coeur & Bernard Bobée, 2004. "Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(3), pages 623-643, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eman AlQasimi & Tew-Fik Mahdi, 2020. "Discussion of “Consequences of dike breaches and dike overflow in a bifurcating river system” by Anouk Bomers, Ralph M. J. Schielen and Suzanne J. M. H. Hulscher," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1629-1632, September.
    2. Javad Ahadiyan & Farhad Bahmanpouri & Atefeh Adeli & Carlo Gualtieri & Alireza Khoshkonesh, 2022. "Riprap Effect on Hydraulic Fracturing Process of Cohesive and Non-cohesive Protective Levees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 625-639, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    2. Paul E. Todhunter & Rhonda Fietzek-DeVries, 2016. "Natural hydroclimatic forcing of historical lake volume fluctuations at Devils Lake, North Dakota (USA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1515-1532, April.
    3. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    4. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    5. Michalis Diakakis & Spyridon Mavroulis & Giorgos Deligiannakis, 2012. "Floods in Greece, a statistical and spatial approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 485-500, June.
    6. F. Luino & A. Belloni & L. Turconi & F. Faccini & A. Mantovani & P. Fassi & F. Marincioni & G. Caldiroli, 2018. "A historical geomorphological approach to flood hazard management along the shore of an alpine lake (northern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 471-488, October.
    7. Junfei Chen & Juan Ji & Huimin Wang & Menghua Deng & Cong Yu, 2020. "Risk Assessment of Urban Rainstorm Disaster Based on Multi-Layer Weighted Principal Component Analysis: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 17(15), pages 1-19, July.
    8. Mel Oliveira Guirro & Gean Paulo Michel, 2023. "Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 723-743, May.
    9. Meiling Zhou & Xiuli Feng & Kaikai Liu & Chi Zhang & Lijian Xie & Xiaohe Wu, 2021. "An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    10. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    11. Alena Kadetova & Yan Radziminovich, 2014. "The catastrophic flood in Transbaikalia (Central Asia) in 1897: case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 423-441, June.
    12. Brookhuis, B.J. & Hein, L.G., 2016. "The value of the flood control service of tropical forests: A case study for Trinidad," Forest Policy and Economics, Elsevier, vol. 62(C), pages 118-124.
    13. José Vladimir Morales-Ruano & Maximino Reyes-Umaña & Francisco Rubén Sandoval-Vázquez & Hilda Janet Arellano-Wences & Justiniano González-González & Columba Rodríguez-Alviso, 2022. "Flood Susceptibility in the Lower Course of the Coyuca River, Mexico: A Multi-Criteria Decision Analysis Model," Sustainability, MDPI, vol. 14(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03643-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.