IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i2d10.1007_s11069-019-03570-y.html
   My bibliography  Save this article

A three-dimensional numerical simulation approach to assess typhoon hazards in China coastal regions

Author

Listed:
  • Y. Liu

    (Tsinghua University
    Tsinghua University)

  • D. Chen

    (Tsinghua University
    Tsinghua University)

  • S. Li

    (Tsinghua University)

  • P. W. Chan

    (Hong Kong Observatory)

  • Q. Zhang

    (Tsinghua University
    Tsinghua University)

Abstract

The paper introduces a three-dimensional numerical technique to assess typhoon hazards in China coastal regions based on a series of full-set numerical meteorology simulations. The boundary and initial conditions of the simulations are provided by adding pseudorandom fluctuations, which represent the localized, short-term meteorological variations, to synoptic fields, which show the large-scale, long-term meteorological patterns. A series of bogus typhoons are inserted into the initial field to provide the “seeds” from which the artificial typhoons could grow. The initial positions and intensities of the bogus typhoons are drawn from the random variables whose statistics agree with those derived from historical typhoon track data. In the present study, 1503 full-set meteorology simulations of artificial typhoons are conducted. The extreme wind speeds versus return periods calculated from the simulation results are compared to not only the specifications in the load code, but also the results from the previous studies. It is found that the extreme wind speeds in the Pearl-River Delta are, contradicting to the common expectation, higher than at the mainland side of the Taiwan Strait, which imply that the typhoons hitting Guangdong are, on average, more intense than those influencing Fujian. Given the possibility to improve the three-dimensional meteorology model in the future, the simulation technique proposed in the present study provides a novel direction to assess the meteorological hazards, including threads posted by typhoons.

Suggested Citation

  • Y. Liu & D. Chen & S. Li & P. W. Chan & Q. Zhang, 2019. "A three-dimensional numerical simulation approach to assess typhoon hazards in China coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 809-835, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03570-y
    DOI: 10.1007/s11069-019-03570-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03570-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03570-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. H. Li & H. P. Hong, 2016. "Typhoon wind hazard estimation for China using an empirical track model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1009-1029, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Joshua Cunanan Agar, 2022. "Evaluating the Increasing Trend of Strength and Severe Wind Hazard of Philippine Typhoons Using the Holland-B Parameter and Regional Cyclonic Wind Field Modeling," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Si Han Li & Suresh Kumar, 2023. "Probable maximum tropical cyclone parameters for east and west coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 859-866, August.
    4. Chaoyong Tu & Shumin Chen & Zhongkuo Zhao & Weibiao Li & Changjian Ni, 2022. "Damage assessment for tropical cyclones landing in Guangdong Province of China by using a projection pursuit dynamic cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 475-493, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03570-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.