IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i2d10.1007_s11069-018-3331-y.html
   My bibliography  Save this article

A comparison of simplified conceptual models for rapid web-based flood inundation mapping

Author

Listed:
  • Heather McGrath

    (Natural Resources Canada)

  • Jean-François Bourgon

    (Natural Resources Canada)

  • Jean-Samuel Proulx-Bourque

    (Natural Resources Canada)

  • Miroslav Nastev

    (Natural Resources Canada)

  • Ahmad Abo El Ezz

    (Natural Resources Canada)

Abstract

In many parts of Canada, limited data are available for hydrodynamic model inputs, and the ability to generate quality flood grids through 1D, 2D or 3D methods is nonviable. In this paper, the capability of simplified flood models, which rely solely on digital terrain models (DTMs), was explored to assess the quality and speed of their results. Results were validated against historic floods in two locations. Three non-physics-based simplified conceptual flood models were tested: (1) planar method, (2) inclined plane and (3) height above nearest drainage network (HAND) model. The accuracy and performance were evaluated using three criteria: inundation extent, water depth and computation time. Findings show that the HAND model is the best predictor of inundation extent, with Probability of Detection and Critical Success Index being higher than 0.90 in both study areas. Though the preprocessing time for the HAND model is lengthy, once completed, the time to simulate flooding at a variety of water levels is rapid, making this model the most suitable choice for web-based, on-demand flood inundation mapping. Knowledge of the fit of these flood models and associated uncertainty can be helpful to emergency managers such that they can better understand exposure and vulnerability while preparing flood response plans.

Suggested Citation

  • Heather McGrath & Jean-François Bourgon & Jean-Samuel Proulx-Bourque & Miroslav Nastev & Ahmad Abo El Ezz, 2018. "A comparison of simplified conceptual models for rapid web-based flood inundation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 905-920, September.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3331-y
    DOI: 10.1007/s11069-018-3331-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3331-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3331-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Mazhar Khan & Imran Shafi & Wasi Haider Butt & Isabel de la Torre Díez & Miguel Angel López Flores & Juan Castañedo Galvlán & Imran Ashraf, 2023. "Model Driven Approach for Efficient Flood Disaster Management with Meta Model Support," Land, MDPI, vol. 12(8), pages 1-27, August.
    2. Blair William Gerald Scriven & Heather McGrath & Emmanuel Stefanakis, 2021. "GIS derived synthetic rating curves and HAND model to support on-the-fly flood mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1629-1653, November.
    3. Heather McGrath & Ahmad Abo El Ezz & Miroslav Nastev, 2019. "Probabilistic depth–damage curves for assessment of flood-induced building losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 1-14, May.
    4. Zhouyayan Li & Jerry Mount & Ibrahim Demir, 2022. "Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 977-1004, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhouyayan Li & Jerry Mount & Ibrahim Demir, 2022. "Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 977-1004, May.
    2. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    3. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    4. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. J. Teng & J. Vaze & S. Kim & D. Dutta & A. J. Jakeman & B. F. W. Croke, 2019. "Enhancing the Capability of a Simple, Computationally Efficient, Conceptual Flood Inundation Model in Hydrologically Complex Terrain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 831-845, January.
    6. John Reimer & Chin Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    7. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    8. Kay Khaing Kyaw & Federica Bonaiuti & Huimin Wang & Stefano Bagli & Paolo Mazzoli & Pier Paolo Alberoni & Simone Persiano & Attilio Castellarin, 2024. "Fast-Processing DEM-Based Urban and Rural Inundation Scenarios from Point-Source Flood Volumes," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    9. John R. Reimer & Chin H. Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    10. Asghar Azizian, 2019. "The Effects of Topographic Map Scale and Costs of Land Surveying on Geometric Model and Flood Inundation Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1315-1333, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3331-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.