IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i2d10.1007_s11069-017-3116-8.html
   My bibliography  Save this article

Improvements in the integration of remote sensing and rock slope modelling

Author

Listed:
  • Mirko Francioni

    (University of Exeter)

  • Riccardo Salvini

    (University of Siena)

  • Doug Stead

    (Simon Fraser University)

  • John Coggan

    (University of Exeter)

Abstract

Over the last two decades, the approach to the investigation of landslides has changed dramatically. The advent of new technologies for engineering geological surveys and slope analyses has led to step-change increases in the quality of data available for landslide studies. However, the use of such technologies in the survey and analysis of slopes is often complex and may not always be either desirable or feasible. In this context, this paper aims to improve the understanding of the use of remote sensing techniques for rock mass characterization and provide guidance and on how and when the data obtained from these techniques can be used as input for stability analyses. Advantages and limitations of available digital photogrammetry and laser scanning techniques will also be discussed in relation to their cost and the quality of data that can be obtained. A critique of recent research data obtained from remote sensing techniques is presented together with a discussion on use of the data for slope stability analysis. This highlights how data use may be optimized to reduce both parameter and model uncertainty in future slope analyses.

Suggested Citation

  • Mirko Francioni & Riccardo Salvini & Doug Stead & John Coggan, 2018. "Improvements in the integration of remote sensing and rock slope modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 975-1004, January.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3116-8
    DOI: 10.1007/s11069-017-3116-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3116-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3116-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Jaboyedoff & Thierry Oppikofer & Antonio Abellán & Marc-Henri Derron & Alex Loye & Richard Metzger & Andrea Pedrazzini, 2012. "Use of LIDAR in landslide investigations: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 5-28, March.
    2. Daniela Piacentini & Stefano Devoto & Matteo Mantovani & Alessandro Pasuto & Mariacristina Prampolini & Mauro Soldati, 2015. "Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 681-697, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Furlani & Alberto Bolla & Linley Hastewell & Matteo Mantovani & Stefano Devoto, 2022. "Integrated Geomechanical and Digital Photogrammetric Survey in the Study of Slope Instability Processes of a Flysch Sea Cliff (Debeli Rtič Promontory, Slovenia)," Land, MDPI, vol. 11(12), pages 1-27, December.
    2. Joana Duarte & Fernanda Rodrigues & Jacqueline Castelo Branco, 2022. "Sensing Technology Applications in the Mining Industry—A Systematic Review," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    3. Xuan-hao Wang & Wei Cui & Gui-ke Zhang & Hong Yang, 2023. "Identification of rocky ledge on steep, high slopes based on UAV photogrammetry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3201-3224, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingxu Song & Yujia Zou & Yuan Li & Yueshun He & Weicheng Wu & Ruiqing Niu & Shuai Xu, 2024. "Enhancing Landslide Detection with SBConv-Optimized U-Net Architecture Based on Multisource Remote Sensing Data," Land, MDPI, vol. 13(6), pages 1-19, June.
    2. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    3. Lidia Selmi & Thais S. Canesin & Ritienne Gauci & Paulo Pereira & Paola Coratza, 2022. "Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    4. Gianluca Esposito & Cristiano Carabella & Giorgio Paglia & Enrico Miccadei, 2021. "Relationships between Morphostructural/Geological Framework and Landslide Types: Historical Landslides in the Hilly Piedmont Area of Abruzzo Region (Central Italy)," Land, MDPI, vol. 10(3), pages 1-28, March.
    5. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    6. Zhen Du & Li Feng & Haiheng Wang & Ying Dong & Da Luo & Xu Zhang & Hao Liu & Maosheng Zhang, 2023. "Identification of Ground Deformation Patterns in Coal Mining Areas via Rapid Topographical Analysis," Land, MDPI, vol. 12(6), pages 1-18, June.
    7. Geoff Main & John Schembri & Ritienne Gauci & Kevin Crawford & David Chester & Angus Duncan, 2018. "The hazard exposure of the Maltese Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 829-855, June.
    8. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    9. Sebastiano Trevisani & Pietro Daniel Omodeo, 2021. "Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities," Land, MDPI, vol. 10(3), pages 1-17, March.
    10. E. Luzio & P. Mazzanti & A. Brunetti & M. Baleani, 2020. "Assessment of tectonic-controlled rock fall processes threatening the ancient Appia route at the Aurunci Mountain pass (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 909-937, July.
    11. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    12. Kamila Pawluszek, 2019. "Landslide features identification and morphology investigation using high-resolution DEM derivatives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 311-330, March.
    13. I. P. Kovács & T. Bugya & Sz. Czigány & M. Defilippi & D. Lóczy & P. Riccardi & L. Ronczyk & P. Pasquali, 2019. "How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: recent landslides in Transdanubia, Hungary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 693-712, March.
    14. Paschalis D. Koutalakis & Ourania A. Tzoraki & Georgios I. Prazioutis & Georgios T. Gkiatas & George N. Zaimes, 2021. "Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    15. Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
    16. Iris Bostjančić & Marina Filipović & Vlatko Gulam & Davor Pollak, 2021. "Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    17. Carlo Robiati & Giandomenico Mastrantoni & Mirko Francioni & Matthew Eyre & John Coggan & Paolo Mazzanti, 2023. "Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling," Land, MDPI, vol. 12(1), pages 1-20, January.
    18. Stefano Devoto & Linley J. Hastewell & Mariacristina Prampolini & Stefano Furlani, 2021. "Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)," Data, MDPI, vol. 6(8), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3116-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.