IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i8p81-d606187.html
   My bibliography  Save this article

Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)

Author

Listed:
  • Stefano Devoto

    (Department of Mathematics and Geosciences, University of Trieste, 34127 Trieste, Italy)

  • Linley J. Hastewell

    (School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3HE, UK)

  • Mariacristina Prampolini

    (National Research Council, Institute of Marine Sciences, 40129 Bologna, Italy)

  • Stefano Furlani

    (Department of Mathematics and Geosciences, University of Trieste, 34127 Trieste, Italy)

Abstract

This study investigates gravity-induced landforms that populate the North-Eastern coast of Malta. Attention is focused on tens of persistent joints and thousands of boulders associated with deep-seated gravitational slope deformations (DGSDs), such as lateral spreads and block slides. Lateral spreads produce deep and long joints, which partially isolate limestone boulders along the edge of wide plateaus. These lateral spreads evolve into large block slides that detach thousands of limestone boulders from the cliffs and transport them towards the sea. These boulders are grouped in large slope-failure deposits surrounding limestone plateaus and cover downslope terrains. Gravity-induced joints (n = 124) and downslope boulders (n = 39,861) were identified and categorized using Google Earth (GE) images and later validated by field surveys. The datasets were digitized in QGIS and stored using ESRI shapefiles, which are common digital formats for storing vector GIS data. These types of landslides are characterized by slow-moving mechanisms, which evolve into destructive failures and present an elevated level of risk to coastal populations and infrastructure. Hundreds of blocks identified along the shore also provide evidence of sinkholes; for this reason, the paper also provides a catalogue of sinkholes. The outputs from this research can provide coastal managers with important information regarding the occurrence of coastal geohazards and represent a key resource for future landslide hazard assessment.

Suggested Citation

  • Stefano Devoto & Linley J. Hastewell & Mariacristina Prampolini & Stefano Furlani, 2021. "Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)," Data, MDPI, vol. 6(8), pages 1-16, July.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:8:p:81-:d:606187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/8/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/8/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff Main & John Schembri & Ritienne Gauci & Kevin Crawford & David Chester & Angus Duncan, 2018. "The hazard exposure of the Maltese Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 829-855, June.
    2. Mariacristina Prampolini & Federica Foglini & Sara Biolchi & Stefano Devoto & Serafino Angelini & Mauro Soldati, 2017. "Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea)," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 457-469, November.
    3. Mariacristina Prampolini & Christopher Gauci & Anton S. Micallef & Lidia Selmi & Vittoria Vandelli & Mauro Soldati, 2018. "Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea)," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 402-410, November.
    4. Niccolò Baldassini & Agata Di Stefano, 2017. "Stratigraphic features of the Maltese Archipelago: a synthesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 203-231, April.
    5. Daniela Piacentini & Stefano Devoto & Matteo Mantovani & Alessandro Pasuto & Mariacristina Prampolini & Mauro Soldati, 2015. "Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 681-697, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoff Main & Ritienne Gauci & John A. Schembri & David K. Chester, 2022. "A multi-hazard historical catalogue for the city-island-state of Malta (Central Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 605-628, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lidia Selmi & Thais S. Canesin & Ritienne Gauci & Paulo Pereira & Paola Coratza, 2022. "Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    2. Lidia Selmi & Paola Coratza & Ritienne Gauci & Mauro Soldati, 2019. "Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea)," Resources, MDPI, vol. 8(4), pages 1-25, October.
    3. Geoff Main & John Schembri & Ritienne Gauci & Kevin Crawford & David Chester & Angus Duncan, 2018. "The hazard exposure of the Maltese Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 829-855, June.
    4. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    5. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    6. I. P. Kovács & T. Bugya & Sz. Czigány & M. Defilippi & D. Lóczy & P. Riccardi & L. Ronczyk & P. Pasquali, 2019. "How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: recent landslides in Transdanubia, Hungary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 693-712, March.
    7. Schembri, John A. & Chester, David K. & Gauci, Ritienne & Speake, Janet & Duncan, Angus M. & Deguara, Joanna Causon, 2020. "Durham University and its role in Malta's development planning during the 1950s through applied research," Land Use Policy, Elsevier, vol. 96(C).
    8. Sebastiano D’Amico & Pauline Galea & Ruben P. Borg & Marc Bonello, 2017. "Georisks in the Mediterranean and their mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 199-202, April.
    9. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    10. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    11. Mirko Francioni & Riccardo Salvini & Doug Stead & John Coggan, 2018. "Improvements in the integration of remote sensing and rock slope modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 975-1004, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:8:p:81-:d:606187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.