IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i3d10.1007_s11069-017-2920-5.html
   My bibliography  Save this article

A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: case study for Annotto Bay, Jamaica

Author

Listed:
  • H. Glas

    (Ghent University)

  • M. Jonckheere

    (Ghent University)

  • A. Mandal

    (University of the West Indies)

  • S. James-Williamson

    (University of the West Indies)

  • P. Maeyer

    (Ghent University)

  • G. Deruyter

    (Ghent University
    Ghent University)

Abstract

Flood risk assessments and damage estimations form integral parts of the disaster risk management in Jamaica, owing its vulnerability to hydrometeorological hazards. Although island wide damage and risk assessments have been carried out for major flood events in Jamaica, few studies have been conducted for the creation of damage and risk maps for vulnerable areas. In this study, a risk-based tool was developed by transferring a proven methodology for flood risk assessment in Flanders, called LATIS, to areas with limited data resources. The town of Annotto Bay was chosen as case study due to its vulnerability to coastal and riverine flooding. The model uses input parameters such as flood data, land use, and socioeconomic data and rainfall values to estimate the damage. The flooding of 2001, caused by tropical storm Michelle, as well as a storm surge with a 100-year return period, was input for the model in order to estimate damage from fresh and saltwater for Annotto Bay. The produced maps show the spatial variation of the damage costs, which correlates with the flood depths. The total calculated damage cost from the freshwater flood of 2001 in the study area was estimated just over USD 7 million. Saltwater damages were calculated at USD 30 million. Although validation of the exact damage costs was not possible, the damage spread and number of affected elements were accurate. The model output also shows the potential number of people who would be killed as a result of the event, which was calculated at only 2 casualties for freshwater. Since in reality no one died, this low estimate can be considered accurate. The casualties caused by the saltwater flooding with a return period of 100 years were estimated at 150 people killed. The results of this approach can be extended to other vulnerable areas of the island having topographical and geographical similarities and being affected by similar hydrometeorological events. Hence, the method allows damage assessment for data-sparse regions, aiding in planning and mitigation measures for flood-prone communities.

Suggested Citation

  • H. Glas & M. Jonckheere & A. Mandal & S. James-Williamson & P. Maeyer & G. Deruyter, 2017. "A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: case study for Annotto Bay, Jamaica," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1867-1891, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2920-5
    DOI: 10.1007/s11069-017-2920-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2920-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2920-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    2. J. Ballesteros-Cánovas & M. Sanchez-Silva & J. Bodoque & A. Díez-Herrero, 2013. "An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3051-3069, June.
    3. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    4. Christopher Burgess & Michael Taylor & Tannecia Stephenson & Arpita Mandal & Leiska Powell, 2015. "A macro-scale flood risk model for Jamaica with impact of climate variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 231-256, August.
    5. Arpita Mandal & Tannecia S. Stephenson & Alrick A. Brown & Jayaka D. Campbell & Michael A. Taylor & Theron L. Lumsden, 2016. "Rainfall-runoff simulations using the CARIWIG Simple Model for Advection of Storms and Hurricanes and HEC-HMS: Implications of Hurricane Ivan over the Jamaica Hope River watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1635-1659, September.
    6. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    7. -, 2002. "Jamaica: Macro-socio-economic assessment of the damage done by flood rains and landslides May 2002," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38868, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Benson, David & Lorenzoni, Irene & Cook, Hadrian, 2016. "Evaluating social learning in England flood risk management: An ‘individual-community interaction’ perspective," Environmental Science & Policy, Elsevier, vol. 55(P2), pages 326-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    2. Juan Pinos & Daniel Orellana & Luis Timbe, 2020. "Assessment of microscale economic flood losses in urban and agricultural areas: case study of the Santa Bárbara River, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2323-2337, September.
    3. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    4. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    2. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    3. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    4. Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018. "Natural Disaster Risk and the Distributional Dynamics of Damages," LEM Papers Series 2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Nicholas A Cradock-Henry & Joanna Fountain & Franca Buelow, 2018. "Transformations for Resilient Rural Futures: The Case of Kaikōura, Aotearoa-New Zealand," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    6. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    7. J. F. Rosser & D. G. Leibovici & M. J. Jackson, 2017. "Rapid flood inundation mapping using social media, remote sensing and topographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 103-120, May.
    8. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    9. Khalid Oubennaceur & Karem Chokmani & Florence Lessard & Yves Gauthier & Catherine Baltazar & Jean-Patrick Toussaint, 2022. "Understanding Flood Risk Perception: A Case Study from Canada," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    10. Po-Kuan Chiang & Patrick Willems, 2013. "Model Conceptualization Procedure for River (Flood) Hydraulic Computations: Case Study of the Demer River, Belgium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4277-4289, September.
    11. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    12. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    13. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    14. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    15. Gianna Ida Festa & Luigi Guerriero & Mariano Focareta & Giuseppe Meoli & Silvana Revellino & Francesco Maria Guadagno & Paola Revellino, 2022. "Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    16. E. Rollason & L. J. Bracken & R. J. Hardy & A. R. G. Large, 2018. "Rethinking flood risk communication," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1665-1686, July.
    17. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    18. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    19. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    20. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2920-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.