IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i3d10.1007_s11069-016-2731-0.html
   My bibliography  Save this article

Cut slope stability assessment along ghat road section of Kolli hills, India

Author

Listed:
  • S. Anbazhagan

    (Periyar University)

  • V. Ramesh

    (Jamsetji Tata School of Disaster Studies (JTSDS), Tata Institute of Social Sciences (TISS))

  • S. E. Saranaathan

    (SASTRA University)

Abstract

In the present study, cut slope stability assessment along ghat road section of Kolli hills was carried out by using various geotechnical parameters of rock and soil slope sections and structural kinematics of major discontinuities is presented. The rock slope (RS) stability assessment was carried out using Rock Mass Rating basic (RMRbasic) and Slope Mass Rating (SMR) classification systems. The type of failure and their Factor of Safety (FOS) for individual RS was calculated using Hoek and Bray method. In the case of soil slopes (SS), the FOS was calculated using Circular Failure Chart (CFC) and Limit Equilibrium (LE) methods. The input data for the slope stability analyses were collected through extensive field work followed by stereonet plotting and laboratory test. There are six rock slope sections, and five soil slope sections were taken into consideration for the cut slope stability analyses. The area depicts class II (RS-1, 2, & 6) and class III (RS-3, 4, & 5) of RMR classes. The SMR result depicts for RS-1, RS-2, and RS-6 are 64.40, 60.02, and 60.70, respectively, and falls in class II stable condition. The SMR values of RS-3 and RS-5 were 44.33 and 57, respectively, and come under the class III partially stable condition. The RS-4 with SMR value of 17.33 falls under the class I completely unstable condition. The FOS of planar failure case indicates that RS-3 (FOS = 0.22) is more unstable, while all other sections are having greater than 1 FOS. The calculated FOS values using CFC method reveals that the FOS is very close to 1 for all the SS sections that fall under completely saturated condition which indicates that these slope sections may fail during heavy rainfall. In LE method, the sections SS-3 and SS-4 are unsafe under partially and completely saturated (natural slope) condition. In average slope condition, all the SS sections are unsafe under partially or completely saturated conditions. The facets 2, 3, 4, and 5 required mitigation measures, to improve the stability of slopes. Site-specific mitigation measures were suggested for partially or completely unstable rock and soil cut slopes.

Suggested Citation

  • S. Anbazhagan & V. Ramesh & S. E. Saranaathan, 2017. "Cut slope stability assessment along ghat road section of Kolli hills, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1081-1104, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2731-0
    DOI: 10.1007/s11069-016-2731-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2731-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2731-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. N. Singh & Rajbal Singh & Bhoop Singh & L. K. Sharma & Rajesh Singh & M. K. Ansari, 2016. "Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2019-2030, April.
    2. R. Sharma & B. Mehta & C. Jamwal, 2013. "Cut slope stability evaluation of NH-21 along Nalayan-Gambhrola section, Bilaspur district, Himachal Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 249-270, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Siddque & S. P. Pradhan, 2018. "Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 577-600, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahid Vatanpour & Mohammad Ghafoori & Hossein Talouki, 2014. "Probabilistic and sensitivity analyses of effective geotechnical parameters on rock slope stability: a case study of an urban area in northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1659-1678, April.
    2. Jeevan R. Kulkarni & Sneha S. Kulkarni & Mitali U. Inamdar & Nitin M. Tamhankar & Spandan B. Waghmare & Kiran R. Thombare & Paresh S. Mhetre & Tanuja Khatavkar & Yashodhan Panse & Amey Patwardhan & Yo, 2022. "“Satark”: Landslide Prediction System over Western Ghats of India," Land, MDPI, vol. 11(5), pages 1-23, May.
    3. Tanmoy Das & Vansittee Dilli Rao & Deepankar Choudhury, 2022. "Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 751-785, October.
    4. Bankim Mahanta & H. O. Singh & P. K. Singh & Ashutosh Kainthola & T. N. Singh, 2016. "Stability analysis of potential failure zones along NH-305, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1341-1357, September.
    5. Ashok Kumar Singh & Jagadish Kundu & Kripamoy Sarkar, 2018. "Stability analysis of a recurring soil slope failure along NH-5, Himachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 863-885, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2731-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.