IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i3p1659-1678.html
   My bibliography  Save this article

Probabilistic and sensitivity analyses of effective geotechnical parameters on rock slope stability: a case study of an urban area in northeast Iran

Author

Listed:
  • Nahid Vatanpour
  • Mohammad Ghafoori
  • Hossein Talouki

Abstract

Despite the development of cities, risk assessment of rock slope stability in urban areas seems not to be growing at the same time. Mashhad is a developed city in northeast of Iran with a population of over 2.4 million. Given the closeness of the southern part of Mashhad to the Binaloud mountain ridge, the stability of the residential complexes that are being constructed in this area is a critical issue. Based on the fundamental roles of discontinuity properties and geo-mechanical parameters of rock mass, in this study we evaluated the most influential parameters of the rock slope stability and the failure probability of the slope near the Negin residential complex built on this ridge. According to the deterministic and probabilistic analyses, the north trench that was excavated for this residential complex could potentially cause plane failure. Moreover, the relationship between effective parameters on instability and their impact on safety factors were determined by sensitivity analysis. Therefore, slope dip, pore water pressure, and joint set dip were highly influential on the safety factor. There was also a nonlinear relationship between different parameters and safety in the studied area. This study presents an approach for risk assessment of rock slope stability in urban areas. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Nahid Vatanpour & Mohammad Ghafoori & Hossein Talouki, 2014. "Probabilistic and sensitivity analyses of effective geotechnical parameters on rock slope stability: a case study of an urban area in northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1659-1678, April.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1659-1678
    DOI: 10.1007/s11069-013-0982-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0982-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0982-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paola Gattinoni, 2009. "Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 161-178, July.
    2. T. Singh & A. Gulati & L. Dontha & V. Bhardwaj, 2008. "Evaluating cut slope failure by numerical analysis—a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(2), pages 263-279, November.
    3. R. Sharma & B. Mehta & C. Jamwal, 2013. "Cut slope stability evaluation of NH-21 along Nalayan-Gambhrola section, Bilaspur district, Himachal Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 249-270, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoxia Xu & Xiaoping Zhou & Qihu Qian, 2021. "The global sensitivity analysis of slope stability based on the least angle regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2361-2379, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Kumar Singh & Jagadish Kundu & Kripamoy Sarkar, 2018. "Stability analysis of a recurring soil slope failure along NH-5, Himachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 863-885, January.
    2. Atta-ur Rahman & Amir Khan & Andrew Collins, 2014. "Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 803-821, March.
    3. Guanhua Sun & Hong Zheng & Wei Jiang, 2012. "A global procedure for evaluating stability of three-dimensional slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1083-1098, April.
    4. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    5. T. N. Singh & Rajbal Singh & Bhoop Singh & L. K. Sharma & Rajesh Singh & M. K. Ansari, 2016. "Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2019-2030, April.
    6. Ruchika Sharma Tandon & Vikram Gupta & Bhimala Venkateshwarlu & Pradeep Joshi, 2022. "An assessment of Dungale landslide using remotely piloted aircraft system (RPAS), ground penetration radar (GPR), and Slide & RS2 Softwares," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1017-1042, September.
    7. S. Anbazhagan & V. Ramesh & S. E. Saranaathan, 2017. "Cut slope stability assessment along ghat road section of Kolli hills, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1081-1104, April.
    8. Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
    9. M. Samanta & P. Punetha & S. Sarkar & A. Dwivedi & M. Sharma, 2019. "Slope stability assessment and design of remedial measures for Tungnath Temple at Uttarakhand, India: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 225-246, March.
    10. Yao-Ming Hong & Shiuan Wan, 2011. "Forecasting groundwater level fluctuations for rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 167-184, May.
    11. D. Ramakrishnan & T. Singh & A. Verma & Akshay Gulati & K. Tiwari, 2013. "Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 315-330, January.
    12. S. P. Pradhan & Vikram Vishal & T. N. Singh, 2018. "Finite element modelling of landslide prone slopes around Rudraprayag and Agastyamuni in Uttarakhand Himalayan terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 181-200, October.
    13. T. Siddque & S. P. Pradhan, 2018. "Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 577-600, September.
    14. V. Vishal & T. Siddique & Rohan Purohit & Mohit K. Phophliya & S. P. Pradhan, 2017. "Hazard assessment in rockfall-prone Himalayan slopes along National Highway-58, India: rating and simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 487-503, January.
    15. Hong Zheng & Zhao Yang & Guan Sun, 2013. "Extremum solutions to the limit equilibrium method subjected to physical admissibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 79-96, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1659-1678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.