IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i2d10.1007_s11069-016-2498-3.html
   My bibliography  Save this article

Sedimentological records of the C.E. 1707 Hōei Nankai Trough tsunami in the Bungo Channel, southwestern Japan

Author

Listed:
  • Hannah E. Baranes

    (University of Massachusetts)

  • Jonathan D. Woodruff

    (University of Massachusetts)

  • Davin J. Wallace

    (University of Southern Mississippi)

  • Kinuyo Kanamaru

    (University of Massachusetts)

  • Timothy L. Cook

    (Worcester State University)

Abstract

A tsunami generated by the C.E. 1707 Hōei earthquake is largely thought to be the flood event of record for southwestern Japan, yet historical documentation of the event is scarce. This is particularly true within the Bungo Channel, where significant inconsistencies exist between historical records and model-derived tsunami heights. To independently assess flooding from the Hōei tsunami in this region, we present complementary reconstructions of extreme coastal inundation from three back-barrier lakes in the northern Bungo Channel: Lake Ryuuoo, Lake Amida, and Lake Kamega. At all sites, the age of the most recent prominent marine overwash deposit is consistent with the timing of the 1707 tsunami. When combined with historical documentation of the event, these sedimentological records provide strong evidence that the 1707 tsunami is the most significant flood of recent centuries and one of the most significant floods over the last millennium in the region. At Lake Ryuuoo, modern barrier beach elevations and grain sizes in the tsunami’s resultant deposit provide ~4 m as the first physically based height constraint for the 1707 tsunami in the northern Bungo Channel. A concurrent transition in lithology that is consistent with regional geomorphic change is also observed at all three sites around 1000 years ago, although the precise timing and nature of the transition remain unclear.

Suggested Citation

  • Hannah E. Baranes & Jonathan D. Woodruff & Davin J. Wallace & Kinuyo Kanamaru & Timothy L. Cook, 2016. "Sedimentological records of the C.E. 1707 Hōei Nankai Trough tsunami in the Bungo Channel, southwestern Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1185-1205, November.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2498-3
    DOI: 10.1007/s11069-016-2498-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2498-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2498-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan D. Woodruff & Jennifer L. Irish & Suzana J. Camargo, 2013. "Coastal flooding by tropical cyclones and sea-level rise," Nature, Nature, vol. 504(7478), pages 44-52, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caroline Ladlow & Jonathan D. Woodruff & Timothy L. Cook & Hannah Baranes & Kinuyo Kanamaru, 2019. "A fluvially derived flood deposit dating to the Kamikaze typhoons near Nagasaki, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 827-841, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Subraelu & Abdel Azim Ebraheem & Mohsen Sherif & Ahmed Sefelnasr & M. M. Yagoub & Kakani Nageswara Rao, 2022. "Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective," Land, MDPI, vol. 11(11), pages 1-28, November.
    2. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    3. Ilan Noy, 2017. "To Leave or Not to Leave? Climate Change, Exit, and Voice on a Pacific Island," CESifo Economic Studies, CESifo Group, vol. 63(4), pages 403-420.
    4. S. M. Smallegan & J. L. Irish & A. R. Dongeren, 2017. "Developed barrier island adaptation strategies to hurricane forcing under rising sea levels," Climatic Change, Springer, vol. 143(1), pages 173-184, July.
    5. Quyen Nguyen & Paul Thorsnes & Ivan Diaz‐Rainey & Antoni Moore & Simon Cox & Leon Stirk‐Wang, 2022. "Price recovery after the flood: risk to residential property values from climate change‐related flooding," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 532-560, July.
    6. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    7. Gaurav Talukdar & Janaki Ballav Swain & Kanhu Charan Patra, 2021. "Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 389-403, October.
    8. Haifeng Zhang & Lin Zhao & Wen Du & Qing Liu & Yifei Zhao & Min Xu, 2022. "Research on the Limit Values of Reclamation Based on Ecological Security: A Case Study of Tongzhou Bay in Rudong, Jiangsu Province," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    9. Jacob Kim-Sherman & Lee Seltzer, 2024. "Clustering in Natural Disaster Damages," Staff Reports 1135, Federal Reserve Bank of New York.
    10. R. Daniel Hanks & Robert F. Baldwin & Travis H. Folk & Ernie P. Wiggers & Richard H. Coen & Michael L. Gouin & Andrew Agha & Daniel D. Richter & Edda L. Fields-Black, 2021. "Mapping Antebellum Rice Fields as a Basis for Understanding Human and Ecological Consequences of the Era of Slavery," Land, MDPI, vol. 10(8), pages 1-15, August.
    11. Milad Bagheri & Zelina Zaiton Ibrahim & Mohd Fadzil Akhir & Wan Izatul Asma Wan Talaat & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour, 2021. "Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia," Land, MDPI, vol. 10(11), pages 1-27, November.
    12. Rachael Sacatelli & Marjorie Kaplan & Glen Carleton & Richard G. Lathrop, 2023. "Coastal Forest Dieback in the Northeast USA: Potential Mechanisms and Management Responses," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    13. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    14. Tianze Pang & Heather D. Penney & Xiuquan Wang, 2023. "Effective Communication of Coastal Flood Warnings: Challenges and Recommendations," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    15. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    16. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    17. Weike Chen & Jing Dong & Chaohua Yan & Hui Dong & Ping Liu, 2021. "What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    18. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    19. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    20. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:2:d:10.1007_s11069-016-2498-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.