IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i1d10.1007_s11069-016-2414-x.html
   My bibliography  Save this article

Experiments to automatically monitor drought variation using simulated annealing algorithm

Author

Listed:
  • Hongbo Zhang

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Nan Li

    (Institute of Heavy Rain, CMA
    Nanjing University of Information Science and Technology)

  • Wengang Zhang

    (Institute of Heavy Rain, CMA)

  • Xiaofang Pei

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

Abstract

A drought is a period of a lack of precipitation in water-deficient areas, causing shortages in their water supply, whether atmospheric, surface, or ground water. Drought with long-duration and wide-area coverage often leads to serious social and economic losses. Consequently, drought monitoring and assessment have become a critical research topic in the area. There are a number of related studies on identifying drought with different types of data, but few aim at automatic drought tracking since drought regions are time variant. In this study, an automatic drought monitoring method is proposed based on drought region tracking. Firstly, drought regions are identified with drought indexes. A simulated annealing algorithm is then used to automatically track different drought regions in successive time intervals based on the area and location of different drought regions. Preliminary results of a case experiment indicate that the simulated annealing algorithm is suitable to be used in automatic monitors and able to achieve desirable tracking results. The proposed method based on the simulated annealing algorithm is effective for automatically monitoring the variation in drought characteristics such as the spatial extent.

Suggested Citation

  • Hongbo Zhang & Nan Li & Wengang Zhang & Xiaofang Pei, 2016. "Experiments to automatically monitor drought variation using simulated annealing algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 175-184, October.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2414-x
    DOI: 10.1007/s11069-016-2414-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2414-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2414-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    2. Wei Gao, 2015. "Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1625-1649, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    2. Manojit Chattopadhyay & Subrata Kumar Mitra, 2018. "Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 50-64, March.
    3. Varsha Pandey & Prashant K Srivastava & Sudhir K Singh & George P. Petropoulos & Rajesh Kumar Mall, 2021. "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    4. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    5. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
    6. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    7. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.
    8. Abhishek Danodia & Anuradha Kushwaha & N. R. Patel, 2021. "Remote sensing-derived combined index for agricultural drought assessment of rabi pulse crops in Bundelkhand region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15432-15449, October.
    9. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2414-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.