IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01305-3.html
   My bibliography  Save this article

Remote sensing-derived combined index for agricultural drought assessment of rabi pulse crops in Bundelkhand region, India

Author

Listed:
  • Abhishek Danodia

    (Indian Institute of Remote Sensing, Indian Space Research Organization)

  • Anuradha Kushwaha

    (Indian Institute of Remote Sensing, Indian Space Research Organization)

  • N. R. Patel

    (Indian Institute of Remote Sensing, Indian Space Research Organization)

Abstract

In this study, a novel approach defined for drought severity of Bundelkhand region of India, especially for rabi (winter) season crops using analytical hierarchy process established a Multi-Criteria Decision-Making approach based combined drought index (CDI). The remote sensing multi-sensor derived datasets, as long-term MODIS satellite data, rainfall from CHIRPS datasets and soil moisture from Era Interim datasets, used for quantification for the 2001–2018 period. The CDI is generated by integrated multi-spectral indices as Vegetation Condition Index, Temperature Condition Index, Precipitation Condition Index, Soil Moisture Condition Index using analytical hierarchy process derived weightage with a consistency ratio of 4.2% and consistency index of 0.038 value. The results show that Jalaun, Hamirpur and Banda districts as Northern part affected more as compared to Lalitpur and parts of Jhansi districts as the Southern part of the study area. The statistical analysis illustrated a significant correlation between crop yield anomaly and CDI for all districts for rabi pulses crops. Thus, a geospatial platform-based approach using historical earth observations with analytical hierarchy process integrated expert advice to finalize variables and their weighing will make this methodology more realistic, easier and quicker to apply in future at any region. Eventually, remote sensing can address the drought risk or severity for all kind of crop ecosystem by using cohesive approach derived from multi-sensor satellite datasets.

Suggested Citation

  • Abhishek Danodia & Anuradha Kushwaha & N. R. Patel, 2021. "Remote sensing-derived combined index for agricultural drought assessment of rabi pulse crops in Bundelkhand region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15432-15449, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01305-3
    DOI: 10.1007/s10668-021-01305-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01305-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01305-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    3. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    4. Pandey, S. & Bhandari, H. & Hardy, B., 2007. "Economic Costs of Drought and Rice Farmers’ Coping Mechanisms: A Cross-Country Comparative Analysis," IRRI Books, International Rice Research Institute (IRRI), number 281814.
    5. Arnab Kundu & N. R. Patel & S. K. Saha & Dipanwita Dutta, 2017. "Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 297-313, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    2. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    3. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    4. Boris Prevolšek & Maja Borlinič Gačnik & Črtomir Rozman, 2023. "Applying Integrated Data Envelopment Analysis and Analytic Hierarchy Process to Measuring the Efficiency of Tourist Farms: The Case of Slovenia," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    5. Milad Bagheri & Zelina Zaiton Ibrahim & Mohd Fadzil Akhir & Wan Izatul Asma Wan Talaat & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour, 2021. "Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia," Land, MDPI, vol. 10(11), pages 1-27, November.
    6. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    7. Ting Kuo & Ming-Hui Chen, 2022. "On Indeterminacy of Interval Multiplicative Pairwise Comparison Matrix," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    8. Fatma Cesur & Nilüfer Taş & Murat Taş, 2024. "A Decision-Making Model Proposal for the Use of Renewable Energy Technologies in Buildings in Turkey," Energies, MDPI, vol. 17(10), pages 1-35, May.
    9. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, vol. 11(4), pages 1-33, March.
    10. Levary, Reuven R. & Wan, Ke, 1998. "A simulation approach for handling uncertainty in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 106(1), pages 116-122, April.
    11. Paulson, Dan & Zahir, Sajjad, 1995. "Consequences of uncertainty in the analytic hierarchy process: A simulation approach," European Journal of Operational Research, Elsevier, vol. 87(1), pages 45-56, November.
    12. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    13. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    14. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    15. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    18. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    19. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    20. Ji-Hee Lee & Woo-Young Chun & Jun-Ho Choi, 2021. "Weighting the Attributes of Human-Related Activities for Fire Safety Measures in Historic Villages," Sustainability, MDPI, vol. 13(6), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01305-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.