IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i3d10.1007_s11069-015-2140-9.html
   My bibliography  Save this article

Relationships between rain and displacements of an active earthflow: a data-driven approach by EPRMOGA

Author

Listed:
  • R. Vassallo

    (University of Basilicata)

  • A. Doglioni

    (Technical University of Bari)

  • G. M. Grimaldi

    (University of Basilicata)

  • C. Di Maio

    (University of Basilicata)

  • V. Simeone

    (Technical University of Bari)

Abstract

Inclinometer and piezometer measurements have been carried out since 2005 in a slow active earthflow in a clay shale formation of the Italian Southern Apennines. Previous studies outlined the main geometrical and kinematic features of the landslide and the pore pressure response to rainfall. Displacement rates seem to depend on the hydrological conditions as suggested by their seasonal variations. The availability of long time series of data, in some periods recorded in continuum, allows the use of a data mining approach to evaluate the relations among displacement rates in different points of the landslide, and between displacement rates and rainfall. To define such relations, the evolutionary modelling technique EPRMOGA, based on a genetic algorithm, has been used in this paper. The results give a deeper insight into the landslide behaviour on the one hand and, on the other hand, show the reliability of the technique, also in building up management scenarios. In particular, the results show that the landslide displacement rates in different points of the slip surface, although characterized by different values, are linearly dependent and thus have the same time trend, supporting the hypothesis of a constant soil discharge mechanism of movement. Piezometric data in single points cannot be used, in the considered case, to forecast displacements. The obtained relations allow to quantify the displacement rate variations due to contemporary rainfall. The influence of past rainfall is shown to decrease exponentially with temporal distance. Furthermore, the EPRMOGA simulations seem to confirm that there are no other dominant causes, besides rainfall, responsible of displacement rate variations in time.

Suggested Citation

  • R. Vassallo & A. Doglioni & G. M. Grimaldi & C. Di Maio & V. Simeone, 2016. "Relationships between rain and displacements of an active earthflow: a data-driven approach by EPRMOGA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1467-1482, April.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-015-2140-9
    DOI: 10.1007/s11069-015-2140-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2140-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2140-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Calcaterra & Claudio Cesi & Caterina Di Maio & Piera Gambino & Katia Merli & Margherita Vallario & Roberto Vassallo, 2012. "Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 257-266, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingzhe Zhang & Bao Zhou & Qiangong Cheng & Lingkai Shen & Aiguo Xing & Yu Zhuang, 2021. "Investigation of the triggering mechanism and runout characteristics of an earthflow in Zhimei village, Chengduo, Qinghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 903-929, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wistuba, Małgorzata & Malik, Ireneusz & Tie, Yongbo & Gorczyca, Elżbieta & Zhang, Xianzheng & Wang, Jiazhu & Lu, Tuo, 2024. "Indicating landslide hazard from tree rings – Ecosystem service provided by an alder forest in the hengduan Mts, Sichuan, China," Ecosystem Services, Elsevier, vol. 67(C).
    2. Zhenwei Dai & Luqi Wang & Xiaolin Fu & Bolin Huang & Senlin Zhang & Xuecheng Gao & Xiangrong He, 2023. "Degradation of Typical Reverse Sand-Mudstone Interbedded Bank Slope Based on Multi-Source Field Experiments," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    3. Younes El Kharim & Ali Bounab & Obda Ilias & Fatima Hilali & Mohamed Ahniche, 2021. "Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): inventory and case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 355-373, May.
    4. Ruya Xiao & Xiufeng He, 2013. "Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1647-1660, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-015-2140-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.