IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i3p1647-1660.html
   My bibliography  Save this article

Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS

Author

Listed:
  • Ruya Xiao
  • Xiufeng He

Abstract

The rapid growth of hydropower in China raises concerns about the related resettlement issues. In order to obtain the real-time surface displacement data of the potential landslides, a continuous GPS observation network is established in new Hanyuan County where more than 100,000 people are resettled due to the Pubugou hydropower engineering in southwest China. GPS multi-antenna switch devices are used to reduce the hardware investment, and the results show that the RMSs of the two horizontal components are 2 and >4 mm for the vertical component. This level of accuracy is comparable to the conventional “one antenna with one receiver” GPS observation mode. The comparison between the displacements evaluated by GPS monitoring method and digital inclinometer shows consistency, and this indicates that GPS could be a reliable complement to traditional ground movement monitoring methods. No catastrophic landslide failures happened since the resettlement was completed. We captured a remarkable movement in August 2011, and this proves that the continuous GPS monitoring system could be used to detect early indications of rapid displacement and for disaster warning. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Ruya Xiao & Xiufeng He, 2013. "Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1647-1660, December.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1647-1660
    DOI: 10.1007/s11069-013-0768-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0768-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0768-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Hastaoglu & D. Sanli, 2011. "Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1275-1294, September.
    2. Stefano Calcaterra & Claudio Cesi & Caterina Di Maio & Piera Gambino & Katia Merli & Margherita Vallario & Roberto Vassallo, 2012. "Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 257-266, March.
    3. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    2. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    3. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    4. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    5. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    6. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    7. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    8. Ming Meng & Lixue Wang & Qu Chen, 2018. "Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the Fairness Principle," Energies, MDPI, vol. 11(9), pages 1-16, August.
    9. Lingxuan Liu & Shotaro Matsuno & Bing Zhang & Beibei Liu & Oran Young, 2013. "Local Governance on Climate Mitigation: A Comparative Study of China and Japan," Environment and Planning C, , vol. 31(3), pages 475-489, June.
    10. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    11. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    12. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    13. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    14. Chen, Anping & Groenewold, Nicolaas, 2015. "Emission reduction policy: A regional economic analysis for China," Economic Modelling, Elsevier, vol. 51(C), pages 136-152.
    15. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    16. Springmann, Marco & Zhang, Da & Xiliang, Zhang & Karplus, Valerie J., 2013. "Incorporating consumption-based emissions accounting into climate policy in China: Provincial target setting and ETS baseline allocations," Conference papers 332341, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    18. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Nielsen, Chris P. & Ho, Mun S. & Zhao, Yu & Wang, Yuxuan & Lei, Yu & Cao, Jing, 2013. "An Integrated Assessment of the Economic Costs and Environmental Benefits of Carbon Taxes in China," Conference papers 332406, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1647-1660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.