IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i1p273-292.html
   My bibliography  Save this article

Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan

Author

Listed:
  • Muhammad Basharat
  • Joachim Rohn

Abstract

The 2005 Kashmir earthquake (M w 7.6) generated widespread mass movements in the Northeast Himalayas of Pakistan. The mass movements were mainly catastrophic rock avalanches, rockslides, rockfalls and debris falls, ranging in volume from a few hundred cubic meters to hundreds of million cubic meters. Data of 103 mass movement events were collected during field surveys to characterize each event. The mass movements and their travel distances were analyzed, using empirical models, widely adopted in the literature. The empirical approaches were used to analyze the relationships between geometrical parameters like volume, Fahrböschung angle, fall height, surface area, travel path and travel distance. The mobility of mass movements was expressed as the ratio between the height of fall and travel distance as function of volume. The volume was estimated by multiplying the deposit area by average thickness. The Fahrböschung angle showed a decreasing tendency with increasing mass movement volume. In addition, the Fahrböschung angle of mass movements with small volumes was more variable. A strongly correlated linear trend exists between the height of fall and travel distance for all types of the mass movement. Moreover, a weak correlation was found between unconfined and partly confined travel path. The empirical results of the 2005 Kashmir earthquake data are consistent with the previously published data from other parts of the world. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Muhammad Basharat & Joachim Rohn, 2015. "Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 273-292, May.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:273-292
    DOI: 10.1007/s11069-015-1590-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1590-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1590-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Basharat & Muhammad Tayyib Riaz & M. Qasim Jan & Chong Xu & Saima Riaz, 2021. "A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1-30, August.
    2. Shah Naseer & Tanveer Ul Haq & Abdullah Khan & Javed Iqbal Tanoli & Nangyal Ghani Khan & Faizan-ur-Rehman Qaiser & Syed Tallataf Hussain Shah, 2021. "GIS-based spatial landslide distribution analysis of district Neelum, AJ&K, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 965-989, March.
    3. Muhammad Basharat & Abid Ali & Ishtiaq A. K. Jadoon & Joachim Rohn, 2016. "Using PCA in evaluating event-controlling attributes of landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1999-2017, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:273-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.