IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i1p565-585.html
   My bibliography  Save this article

A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling

Author

Listed:
  • Seung-Woo Kim
  • Jeffrey Melby
  • Norberto Nadal-Caraballo
  • Jay Ratcliff

Abstract

Expedient prediction of storm surge is required for emergency managers to make critical decisions for evacuation, structure closure, and other emergency responses. However, time-dependent storm surge models do not exist for fast and accurate prediction in very short periods on the order of seconds to minutes. In this paper, a time-dependent surrogate model of storm surge is developed based on an artificial neural network with synthetic simulations of hurricanes. The neural network between six input hurricane parameters and one target parameter, storm surge, is trained by a feedforward backpropagation algorithm at each of 92 uniform time steps spanning 45.5 h for each storm. The basis data consist of 446 tropical storms developed from a joint probability model that was based on historical tropical storm activity in the Gulf of Mexico. Each of the 446 storms was modeled at high fidelity using a coupled storm surge and nearshore wave model. Storm surge is predicted by the 92 trained networks for approaching hurricane climatological and track parameters in a few seconds. Furthermore, the developed surrogate model is validated with measured data and high-fidelity simulations of two historical hurricanes at four points in southern Louisiana. In general, the neural networks at or near the boundary between land and ocean are well trained and model predictions are of similar accuracy to the basis modeling suites. Networks based on modeling results from complex inland locations are relatively poorly trained. Copyright US Government 2015

Suggested Citation

  • Seung-Woo Kim & Jeffrey Melby & Norberto Nadal-Caraballo & Jay Ratcliff, 2015. "A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 565-585, March.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:1:p:565-585
    DOI: 10.1007/s11069-014-1508-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1508-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1508-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sung You & Jang-Won Seo, 2009. "Storm surge prediction using an artificial neural network model and cluster analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 97-114, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    2. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    3. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    4. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    5. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    6. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. S. Lecacheux & J. Rohmer & F. Paris & R. Pedreros & H. Quetelard & F. Bonnardot, 2021. "Toward the probabilistic forecasting of cyclone-induced marine flooding by overtopping at Reunion Island aided by a time-varying random-forest classification approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 227-251, January.
    8. López-Lopera, Andrés F. & Idier, Déborah & Rohmer, Jérémy & Bachoc, François, 2022. "Multioutput Gaussian processes with functional data: A study on coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junli Xu & Yuhong Zhang & Xianqing Lv & Qiang Liu, 2019. "Inversion of Wind-Stress Drag Coefficient in Simulating Storm Surges by Means of Regularization Technique," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    2. Hassan Sharafi & Isa Ebtehaj & Hossein Bonakdari & Amir Hossein Zaji, 2016. "Design of a support vector machine with different kernel functions to predict scour depth around bridge piers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2145-2162, December.
    3. Yen-Ming Chiang & Wei-Guo Cheng & Fi-John Chang, 2012. "A hybrid artificial neural network-based agri-economic model for predicting typhoon-induced losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 769-787, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:1:p:565-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.