IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i3p2683-2697.html
   My bibliography  Save this article

Identification and control of spontaneous combustion of coal pillars: a case study in the Qianyingzi Mine, China

Author

Listed:
  • Yi Lu
  • Botao Qin

Abstract

Spontaneous combustion of coal is a natural hazard during mining. In China, more than 60 % of cases of spontaneous combustion of coal in China result from coal pillars in goafs. In this paper, the plastic deformation of a coal pillar was simulated and, based on the simulated vertical and horizontal displacement, the distribution of surface porosity was deduced. Mathematical models of oxygen consumption together with air diffusion and leakage were incorporated as user-defined functions in a FLUENT simulation to obtain the air flow and oxygen consumption during a 6-month interruption of mining in the Qianyingzi Mine, China. The simulated oxygen concentration was used as an indicator to identify areas of potential spontaneous coal combustion. The application of a foam slurry to the identified potential coal combustion areas proved to be an effective measure to prevent spontaneous coal combustion as carbon monoxide concentration remained at 20 ppm in the air return flow and at 10 ppm in the gas drainage line. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yi Lu & Botao Qin, 2015. "Identification and control of spontaneous combustion of coal pillars: a case study in the Qianyingzi Mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2683-2697, February.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2683-2697
    DOI: 10.1007/s11069-014-1455-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1455-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1455-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yu & Shen-En Chen & Ka-Zhong Deng & Peng Wang & Hong-Dong Fan, 2018. "Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    2. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    3. Leilin Zhang & Botao Qin & Biming Shi & Qing Wu & Juan Wang, 2016. "The fire extinguishing performances of foamed gel in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1957-1969, April.
    4. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    5. Dawid Szurgacz & Magdalena Tutak & Jarosław Brodny & Leszek Sobik & Olga Zhironkina, 2020. "The Method of Combating Coal Spontaneous Combustion Hazard in Goafs—A Case Study," Energies, MDPI, vol. 13(17), pages 1-22, September.
    6. Kun Xu & Shuang Li & Jiao Liu & Cheng Lu & Guangzhe Xue & Zhengquan Xu & Chao He, 2022. "Evaluation Cloud Model of Spontaneous Combustion Fire Risk in Coal Mines by Fusing Interval Gray Number and DEMATEL," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    7. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    8. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2683-2697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.