IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p743-759.html
   My bibliography  Save this article

Application of a fast stochastic storm surge model on estimating the high water level frequency in the Lower Rhine Delta

Author

Listed:
  • H. Zhong
  • P. van Gelder
  • P. van Overloop
  • W. Wang

Abstract

In the Lower Rhine Delta of the Netherlands, the high water level is driven by a joint impact of the downstream storm surge and the upstream fluvial discharge, and affected by the operation of existing man-made structures. In scenario-based risk assessment, a large number of stochastic scenarios of storm surges are required for estimating the high water level frequency. In this article, a fast computing stochastic storm surge model is applied to the gauge station of Hook of Holland in the west of the Netherlands. A fixed number of tides are considered in this model based on the information of historical storm surge events. Based on this model, a large number of stochastic storm surge scenarios are derived and forced into a one-dimensional hydrodynamic model of the Netherlands, resulting in peak water levels in Rotterdam, the most vulnerable city in the delta. These peak water levels are statistically analyzed and converted to the high water level frequency curve in Rotterdam. The high water level frequency curve in Rotterdam tends to a much lower design water level compared to the official design water level that is used to design the dikes and structures for protection of the city. Moreover, there is a significant difference in the high water level frequency curves due to the fact that the stochastic storm surge model considers different numbers of tides. This highlights the critical impact of the storm surge duration on the high water level frequency in the Lower Rhine Delta. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • H. Zhong & P. van Gelder & P. van Overloop & W. Wang, 2014. "Application of a fast stochastic storm surge model on estimating the high water level frequency in the Lower Rhine Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 743-759, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:743-759
    DOI: 10.1007/s11069-014-1104-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1104-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1104-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    2. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    3. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    4. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    5. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
    6. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    7. Tito Homem-de-Mello, 2007. "A Study on the Cross-Entropy Method for Rare-Event Probability Estimation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 381-394, August.
    8. N-H Shih, 2005. "Estimating completion-time distribution in stochastic activity networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 744-749, June.
    9. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    10. T. P. I. Ahamed & V. S. Borkar & S. Juneja, 2006. "Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation," Operations Research, INFORMS, vol. 54(3), pages 489-504, June.
    11. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    12. Francesco Strino & Fabio Parisi & Yuval Kluger, 2011. "VDA, a Method of Choosing a Better Algorithm with Fewer Validations," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    13. Xie, Junfei & Wan, Yan & Mills, Kevin & Filliben, James J. & Lei, Yu & Lin, Zongli, 2019. "M-PCM-OFFD: An effective output statistics estimation method for systems of high dimensional uncertainties subject to low-order parameter interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 93-118.
    14. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    15. Steiner, Jakub & Jehiel, Philippe, 2017. "On Second Thoughts, Selective Memory, and Resulting Behavioral Biases," CEPR Discussion Papers 12546, C.E.P.R. Discussion Papers.
    16. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Mandjes, M., 1993. "Fast simulation of Markov fluid models in conjunction with large deviations," Serie Research Memoranda 0058, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    18. Bahar Kaynar & Ad Ridder, 2009. "The Cross-Entropy Method with Patching for Rare-Event Simulation of Large Markov Chains," Tinbergen Institute Discussion Papers 09-084/4, Tinbergen Institute.
    19. Søren Asmussen & Reuven Y. Rubinstein, 1999. "Sensitivity Analysis of Insurance Risk Models via Simulation," Management Science, INFORMS, vol. 45(8), pages 1125-1141, August.
    20. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:743-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.