IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p639-656.html
   My bibliography  Save this article

Three-parameter generalized exponential distribution in earthquake recurrence interval estimation

Author

Listed:
  • Sumanta Pasari
  • Onkar Dikshit

Abstract

The purpose of this article is to study the three-parameter (scale, shape, and location) generalized exponential (GE) distribution and examine its suitability in probabilistic earthquake recurrence modeling. The GE distribution shares many physical properties of the gamma and Weibull distributions. This distribution, unlike the exponential distribution, overcomes the burden of memoryless property. For shape parameter β> 1, the GE distribution offers increasing hazard function, which is in accordance with the elastic rebound theory of earthquake generation. In the present study, we consider a real, complete, and homogeneous earthquake catalog of 20 events with magnitude above 7.0 (Yadav et al. in Pure Appl Geophys 167:1331–1342, 2010 ) from northeast India and its adjacent regions (20°–32°N and 87°–100°E) to analyze earthquake inter-occurrence time from the GE distribution. We apply the modified maximum likelihood estimation method to estimate model parameters. We then perform a number of goodness-of-fit tests to evaluate the suitability of the GE model to other competitive models, such as the gamma and Weibull models. It is observed that for the present data set, the GE distribution has a better and more economical representation than the gamma and Weibull distributions. Finally, a few conditional probability curves (hazard curves) are presented to demonstrate the significance of the GE distribution in probabilistic assessment of earthquake hazards. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Sumanta Pasari & Onkar Dikshit, 2014. "Three-parameter generalized exponential distribution in earthquake recurrence interval estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 639-656, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:639-656
    DOI: 10.1007/s11069-014-1092-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1092-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1092-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi-Hsuan Chen & Jui-Pin Wang & Yih-Min Wu & Chung-Han Chan & Chien-Hsin Chang, 2013. "A study of earthquake inter-occurrence times distribution models in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1335-1350, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutapa Chaudhuri & Arumita Roy Chowdhury & Payel Das, 2018. "Implementation of Sugeno: ANFIS for forecasting the seismic moment of large earthquakes over Indo-Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 391-405, January.
    2. J. Wang, 2016. "Reviews of seismicity around Taiwan: Weibull distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1651-1668, February.
    3. Sumanta Pasari & Onkar Dikshit, 2018. "Stochastic earthquake interevent time modeling from exponentiated Weibull distributions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 823-842, January.
    4. J. P. Wang, 2016. "Reviews of seismicity around Taiwan: Weibull distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1651-1668, February.
    5. J. Wang & H. Kuo-Chen, 2015. "On the use of AFOSM to estimate major earthquake probabilities in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2577-2587, February.
    6. Spyridon M. Tzaninis & Nikolaos D. Macheras, 2020. "A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process," Papers 2007.05289, arXiv.org, revised Jul 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:639-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.