IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p287-308.html
   My bibliography  Save this article

Moisture–temperature changes and freeze–thaw hazards on a canal in seasonally frozen regions

Author

Listed:
  • Shuangyang Li
  • Yuanming Lai
  • Wansheng Pei
  • Shujuan Zhang
  • Hua Zhong

Abstract

Freeze–thaw action is a complex moisture–heat-mechanics interaction process, which has caused prevailing and severe damages to canals in seasonally frozen regions. Up to now, the detailed frost damage mechanism has not been well disclosed. To explore the freeze–thaw damage mechanism of the canal in cold regions, a numerical moisture–heat-mechanics model is established and corresponding computer program is written. Then, a representative canal in the northeast of China is taken as an example to simulate the freeze–thaw damage process. Meanwhile, the robustness of the numerical model and program is tested by some in situ data. Lastly, the numerical results show that there are dramatic water migration and redistribution in the seasonal freeze–thaw variation layer, causing repetitive frost heave and thaw settlement, and tension–compression stresses. Therefore, the strengths of soil are reduced after several freeze–thaw cycles. Further, the heavy denudation damage and downslope movement of the canal slope would be quite likely triggered in seasonally frozen regions. These zones should be monitored closely to ensure safe operation. As a preliminary study, the numerical model and results in this paper may be a reference for design, maintenance, and research on other canals in seasonally frozen regions. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Shuangyang Li & Yuanming Lai & Wansheng Pei & Shujuan Zhang & Hua Zhong, 2014. "Moisture–temperature changes and freeze–thaw hazards on a canal in seasonally frozen regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 287-308, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:287-308
    DOI: 10.1007/s11069-013-1021-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-1021-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-1021-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhongqiong Zhang & Qingbai Wu, 2012. "Thermal hazards zonation and permafrost change over the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 403-423, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qinguo & Luo, Xiaoxiao & Gao, Jianqiang & Sun, Weiyu & Li, Yongdong & Lan, Tianli, 2022. "Numerical evaluation for cooling performance of a composite measure on expressway embankment with shady and sunny slopes in permafrost regions," Energy, Elsevier, vol. 244(PB).
    2. Yunjiang Zuo & Yuedong Guo & Changchun Song & Shaofei Jin & Tianhua Qiao, 2018. "Study on Soil Water and Heat Transport Characteristic Responses to Land Use Change in Sanjiang Plain," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    3. Guoqing Chen & Yi Wan & Yang Li & XiangJun Pei & Da Huang, 2021. "Time-dependent damage mechanism of rock deterioration under freeze–thaw cycles linked to alpine hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 635-660, August.
    4. Anshuang Su & Mingwei Hai & Miao Wang & Qi Zhang & Bin Zhou & Zhuo Zhao & Chuan Lu & Yanxiu Guo & Fukun Wang & Yuxuan Liu & Yuhang Ji & Bohang Chen & Xinyu Wang, 2024. "Analytical Study on Water and Heat Coupling Process of Black Soil Roadbed Slope in Seasonal Frozen Soil Region," Sustainability, MDPI, vol. 16(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    2. Shengbo Xie & Jianjun Qu & Xiangtian Xu & Yingjun Pang, 2017. "Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 829-850, January.
    3. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:287-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.