IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i3p1749-1769.html
   My bibliography  Save this article

Bayesian probabilities of earthquake occurrences in Shanxi rift system (China)

Author

Listed:
  • Ying Wang
  • Qinglong Zhang
  • Chao Liu

Abstract

China has a long history of earthquake records. The Shanxi rift system (SRS) is situated along the axial zone of the domal uplift of the Shanxi Highlands and is the boundary between the Ordos block and the North China Plain block. Strong earthquakes in the SRS have been recorded since the thirteenth century. In our work, we applied the Bayesian probability method using extreme value distribution of earthquake occurrences to estimate the seismic hazard in the SRS. The seismic moment, slip rate, earthquake recurrence rate, and magnitude were considered as the basic parameters for computing the Bayesian prior estimates of the seismicity. These estimates were then updated in terms of Bayes’ theorem and historical estimates of seismicity in the SRS. The probability of occurrence of $$M_{\text{s}}=5.0$$ M s = 5.0 for Z1, Z2, and Z3 is less than 0.3, 0.1, and 0.6, respectively (T=5 years). The probability of the occurrence of M $$\ge$$ ≥ 8.0 is small for the whole SRS. The selection of upper bound magnitude probably influences the result, and the upper bound magnitude of Z1, Z2, and Z3 may be 7.5, 7.0, and 8.5, respectively. We obtained the values of the magnitude of completeness M c (3.2) and the Gutenberg–Richter b value before applying the Bayesian extreme value distribution of earthquake occurrences method. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Ying Wang & Qinglong Zhang & Chao Liu, 2014. "Bayesian probabilities of earthquake occurrences in Shanxi rift system (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1749-1769, April.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1749-1769
    DOI: 10.1007/s11069-013-0973-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0973-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0973-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imtiyaz A. Parvez, 2007. "On the Bayesian analysis of the earthquake hazard in the North-East Indian peninsula," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 397-412, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battarra, Maria & Balcik, Burcu & Xu, Huifu, 2018. "Disaster preparedness using risk-assessment methods from earthquake engineering," European Journal of Operational Research, Elsevier, vol. 269(2), pages 423-435.
    2. Imtiyaz A. Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2018. "Seismic hazard and risk assessment based on Unified Scaling Law for Earthquakes: thirteen principal urban agglomerations of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1509-1522, July.
    3. Imtiyaz Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2014. "Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 549-562, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1749-1769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.