IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i3p1419-1431.html
   My bibliography  Save this article

Risk evaluation of ice-jam disasters using gray systems theory: the case of Ningxia-Inner Mongolia reaches of the Yellow River

Author

Listed:
  • Dang Luo

Abstract

Risk evaluation for natural disasters is an important part of the emergency management, disaster prevention and mitigation. Because of the complexity and uncertainty of practical evaluation problems, the evaluation information available generally needs depiction of interval gray numbers instead of real numbers. This paper presents an evaluation method with three-parameter interval gray numbers which can deal with dynamic multiple indicators in order to evaluate efficiently the ice-jam disaster risk of Ningxia-Inner Mongolia reaches of the Yellow River in China. The gray range transformation is introduced into the process of model building to eliminate the incomparability of different dimensions. Moreover, model GM(1,1) is used to simulate and predict the development trend of risk vector. As the results show, while the ice-jam disaster risk of Ningxia-Inner Mongolia reaches of the Yellow River reveals certain wave characteristics, the overall trend remains smooth. The risk degree of ice-jam disaster with Bayangol and Toudaoguai is expected to decrease in the years between 2013 and 2015, while that with Sanhu River tends to increase. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Dang Luo, 2014. "Risk evaluation of ice-jam disasters using gray systems theory: the case of Ningxia-Inner Mongolia reaches of the Yellow River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1419-1431, April.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1419-1431
    DOI: 10.1007/s11069-013-0952-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0952-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0952-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dang Luo & Wenxin Mao & Huifang Sun, 2017. "Risk assessment and analysis of ice disaster in Ning–Meng reach of Yellow River based on a two-phased intelligent model under grey information environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 591-610, August.
    2. Feng Zhang & Shiwang Tan & Leilei Zhang & Yameng Wang & Yang Gao, 2019. "Fault Tree Interval Analysis of Complex Systems Based on Universal Grey Operation," Complexity, Hindawi, vol. 2019, pages 1-8, January.
    3. Wenxin Mao & Wenping Wang & Dang Luo & Huifang Sun, 2019. "Analyzing interactions between risk factors for ice disaster in Ning-Meng reach of Yellow River based on grey rough DEMATEL method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1025-1049, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1419-1431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.