IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1046054.html
   My bibliography  Save this article

Fault Tree Interval Analysis of Complex Systems Based on Universal Grey Operation

Author

Listed:
  • Feng Zhang
  • Shiwang Tan
  • Leilei Zhang
  • Yameng Wang
  • Yang Gao

Abstract

The objective of this study is to propose a new operation method based on the universal grey number to overcome the shortcomings of typical interval operation in solving system fault trees. First, the failure probability ranges of the bottom events are described according to the conversion rules between the interval number and universal grey number. A more accurate system reliability calculation is then obtained based on the logical relationship between the AND gates and OR gates of a fault tree and universal grey number arithmetic. Then, considering an aircraft landing gear retraction system as an example, the failure probability range of the top event is obtained through universal grey operation. Next, the reliability of the aircraft landing gear retraction system is evaluated despite insufficient statistical information describing failures. The example demonstrates that the proposed method provides many advantages in resolving the system reliability problem despite poor information, yielding benefits for the function of the interval operation, and overcoming the drawback of solution interval enlargement under different orders of interval operation.

Suggested Citation

  • Feng Zhang & Shiwang Tan & Leilei Zhang & Yameng Wang & Yang Gao, 2019. "Fault Tree Interval Analysis of Complex Systems Based on Universal Grey Operation," Complexity, Hindawi, vol. 2019, pages 1-8, January.
  • Handle: RePEc:hin:complx:1046054
    DOI: 10.1155/2019/1046054
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1046054.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1046054.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1046054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Quan & Bo Zeng & Dai Liu, 2018. "Green Supplier Selection for Process Industries Using Weighted Grey Incidence Decision Model," Complexity, Hindawi, vol. 2018, pages 1-12, October.
    2. Shuai Lin & Yanhui Wang & Limin Jia, 2018. "System Reliability Assessment Based on Failure Propagation Processes," Complexity, Hindawi, vol. 2018, pages 1-19, June.
    3. Dang Luo, 2014. "Risk evaluation of ice-jam disasters using gray systems theory: the case of Ningxia-Inner Mongolia reaches of the Yellow River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1419-1431, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Yang & Ming Liu & Lei Li & Hu Ren & Jianbo Wu, 2019. "Evidence-Based Multidisciplinary Design Optimization with the Active Global Kriging Model," Complexity, Hindawi, vol. 2019, pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang Luo & Wenxin Mao & Huifang Sun, 2017. "Risk assessment and analysis of ice disaster in Ning–Meng reach of Yellow River based on a two-phased intelligent model under grey information environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 591-610, August.
    2. Yifan Chen & Genbao Zhang & Yan Ran, 2019. "Risk Analysis of Coupling Fault Propagation Based on Meta-Action for Computerized Numerical Control (CNC) Machine Tool," Complexity, Hindawi, vol. 2019, pages 1-11, July.
    3. Wenxin Mao & Wenping Wang & Dang Luo & Huifang Sun, 2019. "Analyzing interactions between risk factors for ice disaster in Ning-Meng reach of Yellow River based on grey rough DEMATEL method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1025-1049, July.
    4. Xia, Weifu & Wang, Yanhui & Hao, Yucheng, 2023. "Modeling failure propagation to analyze the vulnerability of the complex electromechanical systems under network attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1046054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.