IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i3p1577-1595.html
   My bibliography  Save this article

Estimation of earthquake casualties using high-resolution remote sensing: a case study of Dujiangyan city in the May 2008 Wenchuan earthquake

Author

Listed:
  • Tienan Feng
  • Zhonghua Hong
  • Hengjing Wu
  • Qiushi Fu
  • Chaoxin Wang
  • Chenghua Jiang
  • Xiaohua Tong

Abstract

From a disaster relief perspective, an immediate and efficient rescue operation after an earthquake can greatly increase the number of survivors. An effective rescue operation depends on two key elements: localisation of the affected areas and estimation of the number of casualties in these areas. Many more studies have been conducted on the localisation of affected areas than on casualty estimation. Consequently, this study develops a model for rapidly estimating the number of casualties using satellite remote sensing (SRS). The model is based on the attributes of damaged buildings, as these buildings cause the greatest harm to inhabitants and they can be detected by SRS. The model uses the damage index (DI) of buildings computed by a numerical damage model derived from SRS images to assess the extent of damage. The DI is then combined with the building’s materials and structure index, which is calculated using information from the local geographic information system, to compute the joint casualty index (JCI). Finally, the number of casualties is estimated by the product of the JCI multiplied by the number of people inside the damaged buildings at the time of the earthquake. The model is then applied to three towns in Dujiangyan City, as these were the areas that most severely affected by the Wenchuan earthquake. Preliminary results showed that there was little difference between the actual and estimated number of casualties. It is recommended that more casualty data should be included in the model to improve the accuracy of estimation. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Tienan Feng & Zhonghua Hong & Hengjing Wu & Qiushi Fu & Chaoxin Wang & Chenghua Jiang & Xiaohua Tong, 2013. "Estimation of earthquake casualties using high-resolution remote sensing: a case study of Dujiangyan city in the May 2008 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1577-1595, December.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1577-1595
    DOI: 10.1007/s11069-013-0764-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0764-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0764-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell Blong, 2003. "A New Damage Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(1), pages 1-23, September.
    2. Lu Hengjian & Masayuki Kohiyama & Kei Horie & Norio Maki & Haruo Hayashi & Satoshi Tanaka, 2003. "Building Damage and Casualties after an Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 387-403, July.
    3. Jochen Schwarz & Mathias Raschke & Holger Maiwald, 2006. "Comparative Seismic Risk Studies for German Earthquake Regions on the Basis of the European Macroseismic Scale EMS-98," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 259-282, May.
    4. Li-Li Xie & Yu-Hong Ma & Jin-Jun Hu, 2007. "A conception of casualty control based seismic design for buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 279-287, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arman Nedjati & Bela Vizvari & Gokhan Izbirak, 2016. "Post-earthquake response by small UAV helicopters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1669-1688, February.
    2. Hamid Reza Ranjbar & Alireza A. Ardalan & Hamid Dehghani & Mohammad Reza Saradjian, 2018. "Using high-resolution satellite imagery to provide a relief priority map after earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1087-1113, February.
    3. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    4. Jian Zhao & Fan Ding & Zhe Wang & Jinghuan Ren & Jing Zhao & Yeping Wang & Xuefeng Tang & Yong Wang & Jianyi Yao & Qun Li, 2018. "A Rapid Public Health Needs Assessment Framework for after Major Earthquakes Using High-Resolution Satellite Imagery," IJERPH, MDPI, vol. 15(6), pages 1-18, May.
    5. Arman Nedjati & Bela Vizvari & Gokhan Izbirak, 2016. "Post-earthquake response by small UAV helicopters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1669-1688, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    2. Isabel Seifert & Annegret Thieken & Mirjam Merz & Dietmar Borst & Ute Werner, 2010. "Estimation of industrial and commercial asset values for hazard risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 453-479, February.
    3. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    4. Archana Patankar & Anand Patwardhan, 2016. "Estimating the uninsured losses due to extreme weather events and implications for informal sector vulnerability: a case study of Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 285-310, January.
    5. Archana Patankar & Anand Patwardhan, 2016. "Estimating the uninsured losses due to extreme weather events and implications for informal sector vulnerability: a case study of Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 285-310, January.
    6. Jochen Schmidt & Iain Matcham & Stefan Reese & Andrew King & Rob Bell & Roddy Henderson & Graeme Smart & Jim Cousins & Warwick Smith & Dave Heron, 2011. "Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1169-1192, September.
    7. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    8. Mauro Niño & Miguel Jaimes & Eduardo Reinoso, 2015. "A risk index due to natural hazards based on the expected annual loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 215-236, October.
    9. Warner Marzocchi & Alexander Garcia-Aristizabal & Paolo Gasparini & Maria Mastellone & Angela Di Ruocco, 2012. "Basic principles of multi-risk assessment: a case study in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 551-573, June.
    10. Heather Craig & Thomas Wilson & Carol Stewart & Gustavo Villarosa & Valeria Outes & Shane Cronin & Susanna Jenkins, 2016. "Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1167-1229, June.
    11. P. Julio-Miranda & A. Ortíz-Rodríguez & A. Palacio-Aponte & R. López-Doncel & R. Barboza-Gudiño, 2012. "Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 751-765, October.
    12. Jidong Wu & Mengqi Ye & Xu Wang & Elco Koks, 2019. "Building Asset Value Mapping in Support of Flood Risk Assessments: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    13. Arna Nishita Nithila & Paromita Shome & Ishrat Islam, 2022. "Waterlogging induced loss and damage assessment of urban households in the monsoon period: a case study of Dhaka, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1565-1597, February.
    14. Zhang, Fan & Fogarty, James, 2015. "Nonmarket Valuation of Water Sensitive Cities: Current Knowledge and Issues," Working Papers 207694, University of Western Australia, School of Agricultural and Resource Economics.
    15. Olga Petrucci & Giovanni Gullà, 2010. "A simplified method for assessing landslide damage indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 539-560, March.
    16. Stylianos Providakis & Chris D. F. Rogers & David N. Chapman, 2020. "Assessing the Economic Risk of Building Damage due to the Tunneling-Induced Settlement Using Monte Carlo Simulations and BIM," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    17. Syed Mudasir Gulzar & Faizan Ul Haq Mir & Muzamil Rafiqui & Manzoor A. Tantray, 2021. "Damage assessment of residential constructions in post-flood scenarios: a case of 2014 Kashmir floods," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4201-4214, March.
    18. Bruno Merz & Jana Friedrich & Markus Disse & Jochen Schwarz & Johann Goldammer & Jochen Wächter, 2006. "Possibilities and Limitations of Interdisciplinary, User-oriented Research: Experiences from the German Research Network Natural Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 3-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1577-1595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.