IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i2p1089-1108.html
   My bibliography  Save this article

Probabilistic seismic hazard analysis of Tripura and Mizoram states

Author

Listed:
  • Arjun Sil
  • T. Sitharam
  • Sreevalsa Kolathayar

Abstract

A probabilistic seismic hazard analysis for the states of Tripura and Mizoram in North East India is presented in this paper to evaluate the ground motion at bedrock level. Analyses were performed considering the available earthquake catalogs collected from different sources since 1731–2010 within a distance of 500 km from the political boundaries of the states. Earthquake data were declustered to remove the foreshocks and aftershocks in time and space window and then statistical analysis was carried out for data completeness. Based on seismicity, tectonic features and fault rupture mechanism, this region was divided into six major seismogenic zones and subsequently seismicity parameters (a and b) were calculated using Gutenberg–Richter (G–R) relationship. Faults data were extracted from SEISAT (Seismotectonic atlas of India, Geological Survey of India, New Delhi, 2000 ) published by Geological Survey of India and also from satellite images. The study area was divided into small grids of size 0.05° × 0.05° (approximately 5 km × 5 km), and the hazard parameters (rock level peak horizontal acceleration and spectral accelerations) were calculated at the center of each of these grid cells considering all the seismic sources within a radius of 500 km. Probabilistic seismic hazard analyses were carried out for Tripura and Mizoram states using the predictive ground motion equations given by Atkinson and Boore (Bull Seismol Soc Am 93:1703–1729, 2003 ) and Gupta (Soil Dyn Earthq Eng 30:368–377, 2010 ) for subduction belt. Attenuation relations were validated with the observed PGA values. Results are presented in the form of hazard curve, peak ground acceleration (PGA) and uniform hazard spectra for Agartala and Aizawl city (respective capital cities of Tripura and Mizoram states). Spatial variation of PGA at bedrock level with 2 and 10 % probability of exceedance in 50 years has been presented in the paper. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Arjun Sil & T. Sitharam & Sreevalsa Kolathayar, 2013. "Probabilistic seismic hazard analysis of Tripura and Mizoram states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1089-1108, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:1089-1108
    DOI: 10.1007/s11069-013-0678-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0678-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0678-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash Kumar & Xiaohui Yuan & M. Ravi Kumar & Rainer Kind & Xueqing Li & R. K. Chadha, 2007. "The rapid drift of the Indian tectonic plate," Nature, Nature, vol. 449(7164), pages 894-897, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avik Paul & Suvam Gupta & Sima Ghosh & Deepankar Choudhury, 2020. "Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 15-45, May.
    2. Md. Zillur Rahman & Sumi Siddiqua & A. S. M. Maksud Kamal, 2020. "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2489-2532, September.
    3. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    4. Ali Kavand & Hamid Alielahi, 2017. "Site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 919-946, September.
    5. Sreevalsa Kolathayar, 2021. "Recent seismicity in Delhi and population exposure to seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2621-2648, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Sitharam & K. Vipin, 2011. "Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 639-653, November.
    2. Masoud Mojarab & Nazi Norouzi & Mahdokht Bayati & Zeinab Asadi & Mohamad Eslami & Mohsen Ghafory-Ashtiany & Abdul-Latif Helaly & Sara Khoshnevis, 2023. "Assessment of seismic hazard including equivalent-linear soil response analysis for Dhaka Metropolitan Region, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3145-3180, July.
    3. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    4. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    5. P. Anbazhagan & Kunjari Mog & K. S. Nanjunda Rao & N. Siddharth Prabhu & Ayush Agarwal & G. R. Reddy & Sima Ghosh & Malay Kr. Deb & Saurabh Baruah & Sarat Kr. Das, 2019. "Reconnaissance report on geotechnical effects and structural damage caused by the 3 January 2017 Tripura earthquake, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 425-450, September.
    6. Panjamani Anbazhagan & Prabhu Gajawada & Aditya Parihar, 2012. "Seismic hazard map of Coimbatore using subsurface fault rupture," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1325-1345, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:1089-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.