IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i3p1431-1441.html
   My bibliography  Save this article

Simulation of water levels and extent of coastal inundation due to a cyclonic storm along the east coast of India

Author

Listed:
  • A. Rao
  • P. Murty
  • Indu Jain
  • R. Kankara
  • S. Dube
  • T. Murty

Abstract

The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • A. Rao & P. Murty & Indu Jain & R. Kankara & S. Dube & T. Murty, 2013. "Simulation of water levels and extent of coastal inundation due to a cyclonic storm along the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1431-1441, April.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1431-1441
    DOI: 10.1007/s11069-012-0193-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0193-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0193-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Rao & Indu Jain & M. Murthy & T. Murty & S. Dube, 2009. "Impact of cyclonic wind field on interaction of surge–wave computations using finite-element and finite-difference models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(2), pages 225-239, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Wei-Bo Chen & Wen-Cheng Liu, 2016. "Assessment of storm surge inundation and potential hazard maps for the southern coast of Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 591-616, May.
    3. Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
    4. Anup Kumar Mandal & Ratheesh Ramakrishnan & Smita Pandey & A. D. Rao & Prashant Kumar, 2020. "An early warning system for inundation forecast due to a tropical cyclone along the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2277-2293, September.
    5. Sachiko Mohanty & A. D. Rao & Himansu Pradhan, 2017. "Effect of seasonal and cyclonic winds on internal tides over the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1109-1124, June.
    6. Chi-Hsiang Wang & Yong Khoo & Xiaoming Wang, 2015. "Adaptation benefits and costs of raising coastal buildings under storm-tide inundation in South East Queensland, Australia," Climatic Change, Springer, vol. 132(4), pages 545-558, October.
    7. Smita Pandey & A. D. Rao, 2018. "An improved cyclonic wind distribution for computation of storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 93-112, May.
    8. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Ting Zhang & Ping Feng & Čedo Maksimović & Paul Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.
    3. Dmitry Dukhovskoy & Steven Morey, 2011. "Simulation of the Hurricane Dennis storm surge and considerations for vertical resolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 511-540, July.
    4. Anup Kumar Mandal & Ratheesh Ramakrishnan & Smita Pandey & A. D. Rao & Prashant Kumar, 2020. "An early warning system for inundation forecast due to a tropical cyclone along the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2277-2293, September.
    5. Ting Zhang & Ping Feng & Čedo Maksimović & Paul D. Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1431-1441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.