IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p1135-1151.html
   My bibliography  Save this article

The integration of nautical charts to reconstruct 3D harbor area models and apply assisted navigation

Author

Listed:
  • Dong-Taur Su
  • D. Lo
  • Cheng-Wu Chen
  • Yi-Chang Huang

Abstract

In this study, we combined the advantages of bitmaps and remote sensing data to reconstruct three-dimensional (3D) harbor models and establish a new simulation navigation system. The models employ triangular elements to reconstruct the topology relationships between the seabed and the harbor area contour map segmentation, thereby producing the grids and polygons of harbor models and the irregular triangular surfaces of land models. Subsequently, sonar data can be inputted repeatedly to detail the extrapolation operators of seabed geography and construct a complete 3D harbor model. The elements and characteristics of simulated environment technologies were included in this study. They enable 3D graphics to be applied in numerous fields and greatly increase the quality of project planning and design by reducing costs and risks, accelerating project implementation, and strengthening the awareness, understanding, and management of integration at various stages, thereby bringing substantial economic benefits to harbor areas. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Dong-Taur Su & D. Lo & Cheng-Wu Chen & Yi-Chang Huang, 2013. "The integration of nautical charts to reconstruct 3D harbor area models and apply assisted navigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1135-1151, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1135-1151
    DOI: 10.1007/s11069-012-0516-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0516-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0516-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-Ko Hsu & Pei-Chiung Huang & Ching-Cheng Chang & Cheng-Wu Chen & Dung-Moung Hung & Wei-Ling Chiang, 2011. "An integrated flood risk assessment model for property insurance industry in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1295-1309, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Pin Tseng & Cheng-Wu Chen, 2012. "Natural disaster management mechanisms for probabilistic earthquake loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1055-1063, February.
    2. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    3. Albert S. Chen & Michael J. Hammond & Slobodan Djordjević & David Butler & David M. Khan & William Veerbeek, 2016. "From hazard to impact: flood damage assessment tools for mega cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 857-890, June.
    4. Wen-Ko Hsu & Wei-Ling Chiang & Cheng-Wu Chen, 2013. "Earthquake risk assessment and optimal risk management strategies for Hi-Tech Fabs in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2063-2076, February.
    5. Chih-Wei Lin & Cheng-Wu Chen & Wen-Ko Hsu & Chia-Yen Chen & Chung-Hung Tsai & Yi-Ping Hung & Wei-Ling Chiang, 2013. "Application of a feature-based approach to debris flow detection by numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 783-796, June.
    6. Cheng-Wu Chen & Ching-Chung Lee & Chia-Hung Chen & Chun-Pin Tseng, 2013. "The integration of nautical hazard assessment and harbor GIS models to the Taichung Port area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 275-294, June.
    7. S. Hochrainer-Stigler & N. Lugeri & M. Radziejewski, 2014. "Up-scaling of impact dependent loss distributions: a hybrid convolution approach for flood risk in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1437-1451, January.
    8. Chih-Chiang Su & Jau-Yau Lu, 2013. "Measurements and prediction of typhoon-induced short-term general scours in intermittent rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 671-687, March.
    9. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    10. Cheng-Wu Chen & Chun-Pin Tseng & Wen-Ko Hsu & Wei-Ling Chiang, 2012. "A novel strategy to determine the insurance and risk control plan for natural disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1391-1403, November.
    11. Cheng-Wu Chen & Kevin Liu & Chun-Pin Tseng & Wen-Ko Hsu & Wei-Ling Chiang, 2012. "Hazard management and risk design by optimal statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1707-1716, November.
    12. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    13. Wen-Ko Hsu & Wei-Ling Chiang & Qiang Xue & Dung-Mou Hung & Pei-Chun Huang & Cheng-Wu Chen & Chung-Hung Tsai, 2013. "A probabilistic approach for earthquake risk assessment based on an engineering insurance portfolio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1559-1571, February.
    14. C. Chen & T. Chen & Y. Chen & S. Yu & P. Chung, 2013. "Storm surge prediction with management information systems: A case study of estimating value and observations system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1009-1027, March.
    15. Chao-Yuan Lin & Yuan-Chung Lai & Shao-Wei Wu & Fan-Chung Mo & Cheng-Yu Lin, 2022. "Assessment of potential sediment disasters and resilience management of mountain roads using environmental indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1951-1975, March.
    16. Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Wen-Ko Hsu & Chun-Pin Tseng & Wei-Ling Chiang & Cheng-Wu Chen, 2012. "Risk and uncertainty analysis in the planning stages of a risk decision-making process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1355-1365, April.
    18. Chi-Wei Lin & Yi-Ping Hung & Wen-Ko Hsu & Wei-Ling Chiang & Cheng-Wu Chen, 2013. "The construction of a high-resolution visual monitoring for hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1285-1292, February.
    19. Bih-Yaw Shih & Chin-Jui Chang & Ying-Hsiu Chen & Chen-Yuan Chen & Yau-Dong Liang, 2012. "Lego NXT information on test dimensionality using Kolb’s innovative learning cycle," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1527-1548, November.
    20. Yu-Shou Su, 2016. "Urban Flood Resilience in New York City, London, Randstad, Tokyo, Shanghai, and Taipei," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 92-108, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1135-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.