IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i2p1119-1134.html
   My bibliography  Save this article

Postseismic relaxation due to Bhuj earthquake on January 26, 2001: possible mechanisms and processes

Author

Listed:
  • C. Reddy
  • P. Sunil
  • Roland Bürgmann
  • D. Chandrasekhar
  • Teruyuki Kato

Abstract

Earthquakes cause static stress perturbations in the nearby crust and mantle. Obeying rheological laws, this stress relaxes in a time frame of months to years with the spatial extent of few km to hundreds of km. While postseismic relaxation associated with major inter-plate earthquakes is well established, there have been few opportunities to explore its occurrence following intraplate earthquakes. The M w 7.6 Bhuj earthquake on January 26, 2001 in western India is considered to be an intraplate event and provided a unique opportunity to examine post-earthquake relaxation processes sufficiently away from plate boundaries. To study the characteristics of transient postseismic deformation, six Global Positioning System campaigns were made at 14 sites. The postseismic transients were delineated after removing plate motions from the position time series. Postseismic deformation has been observed at all the sites in the study area. During 2001–2007, the site closest to the epicenter exhibited postseismic deformation of about 30 and 25 mm in the north and east components, respectively. Time series of the NS and EW components of the postseismic transients can be fitted to both logarithmic and exponential functions. Close to the epicenter, the logarithmic function fits well to the initial transient, and an exponential function fits well to the later phases. The remaining sites (located east and west of the epicentral region) exhibited significantly diminished north–south relaxation. Rapidly decaying afterslip and poroelastic mechanisms seem to be responsible for postseismic relaxation in the vicinity of epicenter during the initial period subsequent to the Bhuj earthquake. Postseismic relaxation by viscoelastic flow below the seismogenic zone seems to affect displacements across the entire Bhuj region. This paper presents the characteristics of postseismic transients and deformation processes in the scenario of the highly heterogeneous crust in the Bhuj region. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • C. Reddy & P. Sunil & Roland Bürgmann & D. Chandrasekhar & Teruyuki Kato, 2013. "Postseismic relaxation due to Bhuj earthquake on January 26, 2001: possible mechanisms and processes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1119-1134, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:2:p:1119-1134
    DOI: 10.1007/s11069-012-0184-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0184-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0184-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigurjón Jónsson & Paul Segall & Rikke Pedersen & Grímur Björnsson, 2003. "Post-earthquake ground movements correlated to pore-pressure transients," Nature, Nature, vol. 424(6945), pages 179-183, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Zilong & Sha, Zongyao, 2023. "Modeling the impact of urbanization and climate changes on terrestrial vegetation productivity in China by a neighborhood substitution analysis," Ecological Modelling, Elsevier, vol. 482(C).
    2. Nabil Sultan & Shane Murphy & Vincent Riboulot & Louis Géli, 2022. "Creep-dilatancy development at a transform plate boundary," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Kostić, Srđan & Vasović, Nebojša & Todorović, Kristina & Franović, Igor, 2018. "Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 310-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:2:p:1119-1134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.